

सावित्रीबाई फुले पुणे विद्यापीठ

Savitribai Phule Pune University, Pune, Maharashtra, India

Faculty of Science and Technology

National Education Policy (NEP)-2020 Compliant Curriculum

First Year Engineering (2024 Pattern)

[Common to All UG Engineering Programs]

(With effect from Academic Year 2024-25)

www.unipune.ac.in

		Leve	I 4.5											
		Course Name	Teaching Scheme (Hrs./week)			Examination Scheme and Marks				Credits				
Course Code	Course Type		Theory	Tutorial	Practical	CCE*	End-Sem	Term work	Practical	Oral	Theory	Tutorial	Practical	Total
	Semester I													
BSC-101-BES	Basic Science Course	Engineering Mathematics- I	3	1	-	30	70	25	-	-	3	1	-	4
BSC-102-BES/ BSC-103-BES	Basic Science Course	Engineering Physics / Engineering Chemistry	3	-	2	30	70	25	-	-	3	-	1	4
ESC-101-ETC / ESC-102-ELE	Engineering Science Course	Basic Electronics Engineering / Basic Electrical Engineering	2	-	2	30	70	25	-	-	2	-	1	3
ESC-103-MEC/ ESC-104-CVL	Engineering Science Course	Engineering Graphics / Engineering Mechanics	2	-	2	30	70	25	-	-	2	-	1	3
ESC-105-COM	Engineering Science Course	Fundamentals of Programming Languages	2	-	2	30	70	25	-	-	2	-	1	3
VSE-101/ VSE-102	Vocational and Skill Enhancement Course	Manufacturing Practice Workshop/ Design Thinking and Idea Lab	-	-	2	-	-	25	-	-	-	-	1	1
AEC-101	Ability Enhancement Course	Professional Communication Skills	-	2	-	-	-	25	-	-	-	2	-	2
CCC-101 Co-Curricular Co-Curricular Course-I					4	-	-	25	-	-	-	-	2	2
Total				03	14	150	350	200	-	-	12	03	07	22

NEP 2020 Compliant Curriculum Structure First Year Engineering (2024 Pattern)

CCE*: Comprehensive Continuous Evaluation

NEP 2020 Compliant Curriculum Structure First Year Engineering (2024 Pattern)

Level 4.5														
				Teaching Scheme (Hrs./week)		Examination Scheme and Marks				e	Credits			
Course Code	Course Type	Course Name	Theory	Tutorial	Practical	CCE*	End-Sem	Term work	Practical	Oral	Theory	Tutorial	Practical	Total
Semester II														
BSC-151-BES	Basic Science Course	Engineering Mathematics- II	3	1	-	30	70	25	-	-	3	1	-	4
BSC-103-BES/ BSC-102-BES	Basic Science Course	Engineering Chemistry/ Engineering Physics	3	-	2	30	70	25	-	-	3	-	1	4
ESC-102-ELE/ ESC-101-ETC	Engineering Science Course	Basic Electrical Engineering/ Basic Electronics Engineering	2	-	2	30	70	25	-	-	2	-	1	3
ESC-104-CVL/ ESC-103-MEC	Engineering Science Course	Engineering Mechanics/ Engineering Graphics	2	-	2	30	70	25	-	-	2	-	1	3
PCC-151-ITT	Program Core Course	Programming and Problem Solving	2	-	2	30	70	25	-	-	2	-	1	3
VSE-102/ VSE-101	Vocational and Skill Enhancement Course	Design Thinking and Idea Lab / Manufacturing Practice Workshop	-	-	2	-	-	25	-	-	-	-	1	1
IKS-151	Indian Knowledge System	Indian Knowledge System	-	2	I	-	-	25	-	-	-	2	-	2
CCC-151 Co-Curricular Courses Co-Curricular Course-II		-	-	4	-	-	25	-	-	-	-	2	2	
Total			12	03	14	150	350	200	-	-	12	03	07	22

CCE*: Comprehensive Continuous Evaluation

Index

Index	4
Preface	5
Program Outcomes (POs)	6
Abbreviations	7
Guidelines for Examination Scheme	8
Course Code: BSC-101-BES Course Name: Engineering Mathematics-I	16
Course Code: BSC-102-BES Course Name: Engineering Physics	
Course Code: BSC-103-BES Course Name: Engineering Chemistry	22
Course Code: ESC-101-ETC Course Name: Basic Electronics Engineering	25
Course Code: ESE-102-ELE Course Name: Basic Electrical Engineering	29
Course Code: ESC-103-MEC Course Name: Engineering Graphics	
Course Code: ESC-104-CVL Course Name: Engineering Mechanics	35
Course Code: ESC-105-COM Course Name: Fundamentals of Programming Languages	
Course Code: VSE-101 Course Name: Manufacturing Practice Workshop	42
Course Code: AEC-101 Course Name: Professional Communication Skills	
Course Code: CCC-101 Course Name Co-Curricular Course – I	51
Course Code: BSC-151-BES Course Name: Engineering Mathematics – II	54
Course Code: PCC-151-ITT Course Name: Programming and Problem Solving	56
Course Code: IKS-151 Course Name: Indian Knowledge System	61
Course Code: CCC-151 Course Name: Co-Curricular Courses - II	63
Task Force for Curriculum Design and Development	65

Preface

The New Education Policy (NEP) 2020 has ushered a new era of change, in India's education system to better meet the needs of the 21st century. SPPU is committed to the effective and fruitful implementation of NEP 2020 in its true spirits emphasizing holistic and multidisciplinary education as per the directives of Maharashtra government. It emphasizes a multidisciplinary approach, aiming to develop critical thinking and creativity, thereby contributing to the holistic development of individuals.

We are delighted to present the first-year engineering syllabus -2024 pattern, which has been meticulously designed in alignment with the NEP 2020 with effect from academic year 2024-25. This curriculum aim to provide students with a holistic approach to engineering education ensuring a strong foundation in Mathematics and Science courses. This curriculum also includes components of vocational and skill enhancement courses, Indian Knowledge System and Co-curricular courses to shape well-rounded engineers who can adapt to global demands. Also, this document provides information on the credit system, course contents, examination and evaluation scheme along with guidelines to make best use of the curriculum designed.

The syllabus encourages experiential learning, where theoretical concepts are supported by practical laboratory sessions. Also promotes research and innovation, encouraging students to engage in projects from the early stages of their academic journey. I wish to thank all the Board of Studies chairpersons and members who contributed in designing this curriculum.

We believe that this syllabus, crafted with the essence of the NEP 2020, will equip our students with the necessary skills and knowledge to excel in their future endeavors. We look forward to embarking on this exciting academic journey with our students.

Dr. Pramod D. Patil Dean – Science and Technology Savitribai Phule Pune University, Pune

Program Outcomes (POs)

PO1	Engineering knowledge	Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems.
PO2	Problem analysis	Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and Engineering sciences.
PO3	Design / Development of Solutions	Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations.
PO4	Conduct Investigations of Complex Problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.
PO6	The Engineer and Society	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practices.
PO7	Environment and Sustainability	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of Engineering practice.
PO9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication Skills	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance	Demonstrate knowledge and understanding of Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments.
PO12	Life-long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Abbreviations

AEC	Ability Enhancement Course
BSC	Basic Science Course
CCC	Co-Curricular Courses
CCE	Comprehensive Continuous Evaluation
CEP	Common Engineering Project
СО	Course Outcome
ELC	Experiential Learning Courses
ESC	Engineering Science Course
FP	Field Project
IKS	Indian Knowledge System
INT	Internship
MDM	Multidisciplinary Minor
NEP	National Education Policy
OE	Open Elective
OJT	On Job Training
PCC	Program Core Course
PEC	Programme Elective Course
РО	Program Outcomes
PR	Practical
PRJ	Project
PSO	Program Specific Outcome
RM	Research Methodology
TH	Theory
TU	Tutorials
VEC	Value Education Course
VSE	Vocational and Skill Enhancement Course

.

Guidelines for Examination Scheme

Theory Examination: The theory examination shall be conducted in two different parts Comprehensive Continuous Evaluation (CCE) and End-Semester Examination (ESE).

Comprehensive Continuous Evaluation (CCE)

Comprehensive Continuous Evaluation (CCE) of 30 marks based on all the Units of course syllabus to be scheduled and conducted at institute level. To design a Comprehensive Continuous Evaluation (CCE) scheme for a theory subject of 30 marks with the specified parameters, the allocation of marks and the structure can be detailed as follows:

Sr.	Parameters	Marks	Coverage of Units
1.	Unit Test	12 Marks	Units 1 & Unit 2 (6 Marks/Unit)
2.	Assignments / Case Study	12 Marks	Units 3 & Unit 4 (6 Marks/Unit)
3.	Seminar Presentation / Open Book Test/ Quiz	06 Marks	Unit 5

Format and Implementation of Comprehensive Continuous Evaluation (CCE)

Unit Test:

Format: Questions designed as per Bloom's Taxonomy guidelines to assess various cognitive levels (Remember, Understand, Apply, Analyze, Evaluate, Create).

Implementation: Schedule the test after completing Units 1 and 2. Ensure the question paper is balanced and covers key concepts and applications.

Sample Question Distribution:

- Remembering (2 Marks): Define key terms related to [Topic from Units 1 and 2].
- Understanding (2 Marks): Explain the principle of [Concept] in [Context].
- Applying (2 Marks): Demonstrate how [Concept] can be used in [Scenario].
- Analyzing (3 Marks): Compare & contrast [Two related concepts] from Units 1 and 2.
- Evaluating (3 Marks): Evaluate the effectiveness of [Theory/Model] in [Situation].

Assignments / Case Study:

Students should submit one assignment or one Case Study Report based on Unit 3 and one assignment or one Case Study Report based on Unit 4.

Format: Problem-solving tasks, theoretical questions, practical exercises, or case studies that require indepth analysis and application of concepts.

Implementation: Distribute the assignments or case study after covering Units 3 and 4. Provide clear guidelines and a rubric for evaluation.

Seminar Presentation:

Seminar Presentation Format:

- Oral presentation on a topic from Unit 5, followed by a Q&A session.
- Deliverables: Presentation slides, a summary report in 2 to 3 pages, and performance during the presentation.

Implementation: Schedule the seminar presentations towards the end of the course. Provide students with ample time to prepare and offer guidance on presentation skills.

Syllabus for First Year of Engineering

Open Book Test:

Format: Analytical and application-based questions to assess depth of understanding.

Implementation: Schedule the open book test towards the end of the course, ensuring it covers critical aspects of Unit 5.

Quiz :

Format: Quizzes can help your students practice existing knowledge while stimulating interest in learning about new topic in that course. You can set your quizzes to be completed individually or in small groups. **Implementation**: Online tools and software can be used create quiz. Each quiz is made up of a variety of question types including multiple choice, missing words, true or false etc

Example Timeline for conducting CCE:

Weeks 1-4	: Cover Units 1 and 2
Week 5	: Conduct Unit Test (12 marks)
Weeks 6-8	: Cover Units 3 and 4
Week 9	: Distribute and collect Assignments / Case Study (12 marks)
Weeks 10-12	: Cover Unit 5
Week 13	: Conduct Seminar Presentations or Open Book Test or Quiz (6 marks)

Evaluation and Feedback:

Unit Test: Evaluate promptly and provide constructive feedback on strengths and areas for improvement. **Assignments / Case Study:** Assess the quality of submissions based on the provided rubric. Offer feedback to help students understand their performance.

Seminar Presentation: Evaluate based on content, delivery, and engagement during the Q&A session. Provide feedback on presentation skills and comprehension of the topic.

Open Book Test: Evaluate based on the depth of analysis and application of concepts. Provide feedback on critical thinking and problem-solving skills.

By following this scheme, you can ensure a structured and comprehensive evaluation of students' understanding and application of the course material, adhering to Bloom's Taxonomy guidelines for cognitive skills evaluation.

End-Semester Examination (ESE)

End-Semester Examination (ESE) of 70 marks written theory examination based on all the unit of course syllabus scheduled by university. Question papers will be sent by the University through QPD (Question Paper Delivery). University will schedule and conduct ESE at the end of the semester.

Format and Implementation of End-Semester Examination (ESE)

Question Paper Design

Below structure is to be followed to design an End-Semester Examination (ESE) for a theory subject of 70 marks on all 5 units of the syllabus with questions set as per Bloom's Taxonomy guidelines and 14 marks allocated per unit:

Balanced Coverage: Ensure balanced coverage of all units with questions that assess different cognitive levels of Bloom's Taxonomy: Remember, Understand, Apply, Analyze, Evaluate, and Create. The questions should be structured to cover:

- Remembering: Basic recall of facts and concepts.
- Understanding: Explanation of ideas or concepts.
- Applying: Use of information in new situations.
- Analyzing: Drawing connections among ideas.
- Evaluating: Justifying a decision or course of action.
- Creating: Producing new or original work (if applicable).

Detailed Scheme: Unit-Wise Allocation (12 Marks per Unit): Each unit will have a combination of questions designed to assess different cognitive levels. By following this scheme, you can ensure a comprehensive and fair assessment of students' understanding and application of the course material, adhering to Bloom's Taxonomy guidelines for cognitive skills evaluation.

Guidelines for Term Work Evaluation

Term Work assessment shall be conducted for the theory courses, lab practical, VSE, IKS, AEC and CCC assignments submitted in journal form. Term work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding.

It should be assessed by subject teacher of the institute and the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the Savitribai Phule Pune University (SPPU) at the end of the semester.

Overview:

Students will submit a journal documenting their practical assignments, providing a comprehensive record of their practical work and learning experiences throughout the course. The journal will include detailed descriptions of the practical assignments, observations, results, reflections, and any additional relevant materials.

Journal Components:

Practical Assignments: Each practical assignment should be clearly labelled and dated. Include the assignment prompt, objectives, materials used, procedures, observations, and results. Ensure assignments cover a variety of practical skills and techniques as outlined in the syllabus.

Reflections: Reflective entries should accompany each practical assignment. Discuss the learning process, challenges faced, and how they were overcome. Highlight key takeaways and how the practical assignment contributed to overall understanding.

Supplementary Materials: Include any additional materials relevant to the practical assignments (e.g., raw data, sketches, photographs, feedback received). Supplementary materials should be organized and clearly linked to the corresponding assignments.

Evaluation Criteria:

- **Completeness (20%):** All practical assignments are included, completed, and properly labeled. Reflective entries are present for each practical assignment.
- Quality of Work (40%): Practical assignments are completed with a high level of accuracy and thoroughness. Demonstrates a strong understanding of practical techniques and principles. Reflective entries provide meaningful insights into the learning process.
- **Organization** (20%): The journal is well-organized and easy to navigate. Practical assignments and reflections are clearly labeled and ordered chronologically. Supplementary materials are appropriately linked and referenced.
- **Presentation** (10%): The journal is neatly presented and free of spelling and grammatical errors. Includes a cover page with the student's name, course title, and submission date. Utilizes a consistent format and style throughout.
- **Creativity and Engagement (10%):** Demonstrates creativity in approach and presentation. Engages deeply with the practical work, going beyond surface-level understanding. Shows evidence of critical thinking and personal engagement with the assignments.

Submission Guidelines:

Journals should be submitted in a bound or digital format as specified by the instructor. Ensure that all components are included and properly organized before submission. Late submissions may be subject to penalties as per the course policy.

Example Timeline:

- Weeks 1-3 : Complete and document Practical Assignments 1 and 2, including reflections.
- Weeks 4-6 : Complete and document Practical Assignments 3 and 4, including reflections.
- Weeks 7-9 : Complete and document Practical Assignments 5 and 6, including reflections.
- Week 10 : Finalize and organize the journal.
- Week 11 : Submit the completed journal for evaluation.

Benefits:

- Encourages regular and consistent engagement with practical work.
- Provides a comprehensive record of student progress and learning.
- Develops skills in reflection, organization, and presentation.
- Allows for personalized feedback and growth opportunities.
- By structuring term work evaluation through journal submissions, students can benefit from a holistic and continuous assessment process that supports their practical skills development and academic growth.

Guidelines for conducting 1 Hour Tutorial Session

Conducting a two-hour tutorial session allows for more in-depth exploration and interaction compared to shorter sessions. Here are comprehensive guidelines to effectively conduct a two-hour tutorial session for a theory subject:

1. Preparation:

Review Content: Ensure a thorough understanding of the theory subject and select key topics or concepts to cover during the session.

Set Objectives: Define clear learning objectives that align with the course syllabus and students' learning needs.

Prepare Materials: Gather necessary materials such as lecture notes, slides, handouts, and any supplementary resources or examples.

2. Structure of the Tutorial:

Introduction and Agenda Setting (05 minutes): Welcome students and outline the agenda for the tutorial session. Clarify the learning objectives and expectations for the session.

Recap or Review (07 minutes): Recap briefly the key points from previous sessions or relevant topics. Address any lingering questions or uncertainties from the previous material.

Presentation and Explanation (15 minutes): Present new material or delve deeper into selected topics. Provide clear explanations using examples, diagrams, or visual aids to aid understanding. Break down complex ideas into manageable parts and ensure clarity in explanations.

Interactive Discussion and Q&A (12 minutes): Engage students in discussions related to the presented material. Encourage active participation and critical thinking through open-ended questions. Address student queries and encourage them to ask questions for clarification.

Application and Practice (15 minutes): Assign activities or problem-solving exercises that apply the newly learned concepts. Monitor students' progress and provide guidance as they work through the tasks. Facilitate peer-to-peer learning by encouraging students to discuss their approaches with peers.

Summary and Conclusion (05 minutes): Summarize the main points covered during the tutorial session. Reinforce key concepts and their relevance to the broader course objectives. Prepare students for the next steps in their learning journey related to the topic.

Feedback and Next Steps (05 minutes): Gather feedback from students on the tutorial session, including what they found most helpful and any areas needing improvement. Provide recommendations for further study, additional resources, or upcoming assignments related to the topic.

3. Engagement Strategies:

Active Participation: Encourage all students to actively engage in discussions and activities throughout the session.

Use of Technology: Utilize multimedia presentations or online tools to enhance learning experiences and engagement.

Group Activities: Incorporate group discussions or collaborative activities to promote peer learning and interaction.

4. Assessment and Evaluation:

Formative Assessment: Assess student understanding through informal assessments, discussions, and problem-solving activities.

Syllabus for First Year of Engineering

Feedback Mechanism: Provide timely feedback on students' participation and comprehension to support their learning progress.

5. Logistics and Environment:

Classroom Setup: Ensure a comfortable and conducive learning environment with adequate seating, lighting, and equipment for presentations.

Time Management: Manage time effectively to cover all planned activities within the two-hour duration.

6. Post-Tutorial Follow-Up:

Reflection: Reflect on the tutorial session to evaluate its effectiveness and identify areas for improvement in future sessions.

Student Support: Offer additional office hours or online support for students who may need further assistance with tutorial material or assignments.

By following these guidelines, you can conduct a structured and engaging two-hour tutorial session that enhances students' understanding and retention of theory subjects while fostering active learning and participation.

Guidelines for The Students Induction Programme (SIP) for First Year Engineering

When First Year Engineering students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Induction programme for First Year Engineering students is introduced to familiarize them to the new environment and encourage them to learn beyond classrooms.

Objective is to help new students adjust and feel comfortable in the new environment, inculcate in them the ethos and culture of the institution, help them build bonds with other students and faculty members, and expose them to a sense of larger purpose and self-exploration. Induction Program should be preferably of 3 weeks (2 weeks at beginning first semester and 1 week at the beginning of second semester).

In order to implement the (SIP) the following activities can be taken at college.

- a) **Physical Activity**: This would involve a daily routine of physical activity with games and sports.
- b) **Creative Arts:** Every student would choose one skill related to arts whether visual arts or performing arts.

- c) Mentoring and Universal Human values: -Mentoring and connecting the students with faculty members and other students is the most important part of student induction. This can be effectively done by forming a group of 22-24 students with a faculty mentor each. This can be implemented through group discussion and real-life activities rather than only lecturing.
- d) **Familiarization with College, Department and Branch:** The incoming student should be told about the credit, grading system and scheme of the examination. They should be explained how the study in College differs from the study in school. They should be taken on College tour and shown important facilities such as library, canteen, gymkhana etc. They should be shown their own department.
- e) Literary Activity:- Literary Activity would compass reading book, writing a summary, debating, enacting a play etc.
- f) Proficiency modules: The modules can be designed to overcome some critical lacunas that students might have like English Speaking, Computer familiarity etc.
- g) **Lectures by Eminent People:** The lectures of Eminent people be organized to expose the students to social activity and public life.
- h) **Visit to local Area:-** A couple of visits to the landmarks of the city or a hospital are orphanage could be organized.
- i) **Extracurricular activities in College:** The new students should be introduced to the extracurricular activities at the College.
- j) Feedback and Report on the program:-Students should be asked to give their mid program Feedback wherein each group of 22-24 students should be asked to prepare a single report on their experience of the program.

These are summarized guidelines to be given to the student inducing induction programme (SIP). Please refer SIP Manual published by AICTE for detail guidelines at <u>https://www.aicte-india.org/content/student-induction-program-detailed-guide</u>.

सावित्रीबाई फुले पुणे विद्यापीठ

Savitribai Phule Pune University Faculty of Science and Technology

National Education Policy (NEP) Compliant Curriculum

Semester - I

First Year Engineering (2024 Pattern)

www.unipune.ac.in

Savitribai Phule Pune University First Year of Engineering (2024 Pattern) Course Code: BSC-101-BES Course Name: Engineering Mathematics-I

Teaching Scheme			Credit	Exa	n Scheme	
Theory	:	3 Hours/Week	03	CCE	:	30 Marks
Tutorial	:	1 Hour/Week	01	End-Semester	:	70 Marks
				Term Work	:	25 Marks

Prerequisite Courses, if any:

• Differentiation, Integration, Maxima and Minima, Matrices and Determinants.

Course Objectives:

To familiarize the students with concepts and techniques in Calculus, Fourier series and Linear Algebra. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines.

Course Outcomes:

After successful completion of the course, learner will be able to:

CO1: Apply mean value theorems and its generalizations leading to Taylors and Maclaurin's series useful in the analysis of engineering problems. **Determine** the Fourier series representation and harmonic analysis of periodic functions in engineering applications.

CO2: Evaluate derivative functions of several variables that are essential in various engineering problems.

CO3: Apply the concept of Jacobian to find partial derivatives of implicit function and functional dependence. Use of partial derivatives in estimating errors & approximations and finding extreme values

of the function.

CO4: Apply the essential tool of matrices and linear algebra in a comprehensive manner for analysis of system of linear equations, Linear dependence & Independence, finding linear and orthogonal transformations.

CO5: Determine Eigen values & Eigen vectors. Use it to diagonalize matrix and to reduce quadratic form to canonical form, applicable to engineering problems.

Course Contents						
Unit I	Single Variable Calculus	(08 Hours)				
Rolle's Theorem, Mean Value Theorems, Taylor's and Maclaurin's Series, Indeterminate Forms and						
L' Hospital's Rule.						
Fourier series: Full rang	ge and Half rage Fourier series, Harmonic analysis, Applications	to problems in				
Engineering						
Unit II	Multivariable Calculus – Partial Differentiation	(08 Hours)				
Introduction to functions of several variables, Limit, Continuity and Partial Derivatives. Euler's Theorem						
on Homogeneous functions, Partial derivative of Composite Function, Total Derivative and Change of						

First Year Engineering – 2024 Pattern - Faculty of Science and Technology

Independent variables.					
Unit III	Applications of Partial Differentiation	(08 Hours)			
Jacobian and its applica	tions, Errors and Approximations, Maxima and Minima of fu	inctions of two			
variables, Lagrange's me	thod of undetermined multipliers and Applications to problems	in Engineering			
Unit IV	Linear Algebra – Matrices and System of Linear Equations	(08 Hours)			
Rank of a Matrix, Syst	em of Linear Equations, Linear Dependence and Independen	ce, Linear and			
Orthogonal Transformati	ions, Application to problems in Engineering.				
Unit V	Linear Algebra - Eigen Values, Eigen Vectors and Diagonalization	(08 Hours)			
Eigen Values and Eigen	Vectors, Cayley Hamilton theorem, Diagonalization of a matrix	x, Reduction of			
Quadratic forms to Cano	nical form by Linear and Orthogonal transformations. Applicati	on to problems			
in Engineering.					
Learning Resources					
Text Books:					
1.Higher Engineering I	Mathematics by B. V. Ramana (Tata McGraw Hill)				
2.Higher Engineering I	Mathematics by B. S. Grewal (Khanna Publication)				
Reference Books:					
1. Advanced Engineer	ring Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.)				
2. Advanced Engineer	ring Mathematics by M. D. Greenberg (Pearson Education)				
3. Advanced Engineer	ring Mathematics by Peter V. O'Neil (Thomson Learning)				
4. Thomas' Calculus	by George B. Thomas, (Addison-Wesley, Pearson)				
5. Applied Mathemati	cs (Vol. I & Vol. II) by P.N.Wartikar and J.N.Wartikar Vidyarth	ni Griha			
Prakashan, Pune.					
6. Elementary Linear	Algebra. by Ron Larson and David C. Falvo (Houghton Mifflin	Harcourt			
Publishing Company)					
MOOC / NPTEL/YouTube Links: - <u>https://youtube.com/playlist?list=PLbRMhDVUMngeVrxtbBz-</u> <u>n8HvP8KAWBpI5&si=3xAONJdT2ph_jcvG</u>					
 Tutorial and Term Work: 1. Tutorial for the subject shall be engaged in minimum three batches (batch size of 22 students maximum) per division. 					

2. Term work shall consist of six assignments each on unit-I to unit-VI and is based on performance and continuous internal assessment.

	Savitribai Phule Pune University						
First Year of Engineering (2024 Pattern) Course Code: BSC-102-BES Course Name: Engineering Physics							
	Theory:03 Hours/WeekPractical:02 Hours/Week	03 01	CCE : End-Semester : Term Work :	30 Marks 70 Marks 25 Marks			

Prerequisite Courses, if any:

Bohr's atomic theory, properties of mechanical and electromagnetic waves, Huygens' principle and wavefront, interference and polarization of light, wave particle duality, intrinsic and extrinsic semiconductors, basics of magnetism, trigonometry and calculus.

Course Objectives:

The objective of the course is to impart the knowledge of fundamentals of physics through hands-on experiments and extend it to relevant engineering applications.

Course Outcomes:

After successful completion of the course, learner will be able to:

CO1: Develop the understanding of working principle of lasers, optical fibers and extend it to holography and fiber optic communication.

CO2: Deduce Schrödinger's wave equations and apply it to problems on the bound states by summarizing fundamentals of quantum physics.

CO3: Explain phenomena of interference in thin films, polarization, double refraction and connect to the Anti-Reflection Coating, LCD.

CO4: Develop understanding of Fermi level and Fermi energy in semiconductors on the basis of results of Fermi Dirac statistics and relate them with the working of semiconducting devices. Extend the **understanding** of Ultrasonic to thickness measurement, flaw detection.

CO5: Explain properties of nanoparticles and estimate engineering applications; Explain phenomenon of Superconductivity and estimate engineering applications.

Course Contents				
Unit I	Fundamentals of Photonics	(08 Hours)		

Laser: Spontaneous and stimulated emission, population inversion, pumping, active medium & active center, resonant cavity; Characteristics of lasers, CO2 laser: construction and working, Engineering applications of laser (IT, medical, industry), Holography (recording, reconstruction, applications); Optical

Optical fibers: Critical angle, acceptance angle, acceptance cone, numerical aperture, total internal reflection and propagation of laser; Classification of optical fibers: Single mode & multimode, step index & graded index, Attenuation: attenuation coefficient, causes of attenuation; Advantages of optical fiber communication, numerical problems on parameters of optical fiber.

Unit II	Quantum Physics	(08 Hours)			
de Broglie hypothesis of matter	de Broglie hypothesis of matter waves, de Broglie wavelength for a particle accelerated by KE "E" and				
a charged particle accelerated	by PD "V", properties of matter waves; Wave function	and probability			
density, mathematical condition	ons for wave function, problems on de Broglie waveler	igth; Need and			
significance of Schrödinger's e	quations, Schrödinger's time independent and time depen	dent equations;			
Energy of a particle enclosed in a rigid box and related numerical problems; Quantum mechanical					
tunneling, alpha particle decay, principle and applications of STM; Principles of quantum computing:					
concept of qbit, superposition and entanglement, comparison of classical & quantum computing,					
potential applications of quantum computing.					

Unit III	Wave optics	(08 Hours)
	· · · · · · · · · · · · · · · · · · ·	

Interference in thin film of uniform thickness, conditions of maxima and minima for reflected system; Conditions for maxima and minima for wedge shaped film (qualitative), engineering applications – ARC, determination of optical flatness; Numerical problems on thin film and wedge shaped film; Types of polarization: Unpolarized, Polarized, PPL, CPL and EPL, Malu's law and related numerical problems; Double refraction: geometry of calcite crystal, Huygens' theory; Engineering applications of polarization: LCD, communication & radar, 3D movies (recording, projection).

Unit IVSemiconductor Physics and Ultrasonics(08 Hours)Semiconductor Physics: Valence band, conduction band, band gap energy, classification of solids on
the basis of band theory; Fermi level and Fermi energy for metal, FD distribution function and its
temperature dependence, position of Fermi level in intrinsic semiconductors (derivation); Fermi level for
extrinsic semiconductors, working of PN junction diode on the basis of Fermi energy; Solar cell:
principle, working, IV-characteristics, efficiency and fill factor, measures to improve efficiency of solar
cell, advantages and applications in environmental sustainability; Hall effect: derivation for Hall voltage
and Hall coefficient and related numerical problems.

Ultrasonics: Characteristics and properties of ultrasonic waves, Generation of ultrasonic waves by inverse piezoelectric effect (using transistor); Engineering applications - thickness measurement, flaw detection and related numerical problems.

Unit V

Physics of Nanoparticles and Superconductivity

(08 Hours)

Nanoparticles: Quantum confinement and its effect on properties of nanoparticles, synthesis methods - ball milling and Physical Vapor Deposition; Properties of nanoparticles (optical, electrical, mechanical, magnetic); Applications of nanotechnology: Electronics (GMR effect and its application in read-write head of HDD), automobiles, environmental & energy, medical field (targeted drug delivery).

Superconductivity: Temperature dependence of resistivity, critical magnetic field, critical current, Meissner effect and perfect diamagnetism; Type I and Type II Superconductors, Numerical problems on critical magnetic field; Formation of Cooper pairs, DC and AC Josephson effect, SQUID: working principle and applications; Engineering applications: electronics, principle of Maglev train.

List of Laboratory Experiments/Assignments (Any 8 from the given list)

- 1. An experiment based on Laser: To determine the divergence of a laser beam or to determine diameter of a thin wire or to perform beam profile analysis of a laser beam.
- 2. An experiment based on optical fiber: To determine the numerical aperture or attenuation coefficient or critical angle of incidence for given a glass slab or any experiment to calculate parameters of optical fiber.
- 3. Determination of Planck's constant using available experimental setup.
- 4. Newton's rings to understand the interference and determine radius of curvature of a given plano-convex lens or determine wavelength of given monochromatic light.
- 5. An experiment based on diffraction: determination of number of lines per centimeter on grating surface using normal incidence method or determination of wavelength of laser using transmission grating or to determine wavelength of light using diffraction grating & spectrometer.
- 6. An experiment based on polarization: To verify cosine square law of Malus Law for plane polarized light or to determine the specific rotation of the given sample with the help of a polarimeter or to determine refractive indices of extraordinary and ordinary rays using double refractive prism.
- 7. To determine the band gap energy of a semiconductor sample using a PN junction diode.
- 8. To plot I-V characteristics and determine fill factor and efficiency of a given solar cell.
- 9. To determine Hall coefficient and charge carrier density of a given semiconductor sample.
- 10. Determination of velocity of ultrasonic waves and compressibility of given liquid by using Ultrasonic Interferometer
- 11. An experiment based on physical measurements developed using Arduino interface for Hall effect sensor or Ultrasonic sensor.
- 12. Study tour / visit to a research laboratory / facility and submit a report.

Note: Apart from the above list, any one experiment related to the curriculum available in the institute / developed in-house / performing experiment on Virtual Lab platform may also be considered to be performed out of eight experiments.

Learning Resources

Text Books:

- A Textbook of Engineering Physics, M. N. Avadhanulu, P. G. Kshirsagar & TVS Arun Murthy, S. Chand Publications.
- Engineering Physics, R. K. Gaur and S. L. Gupta, Dhanpat Rai Publications.

Reference Books:

- Optics, Ajoy Ghatak, Tata Mc Graw Hill
- Introduction to Solid State Physics, C. Kittel, Wiley and Sons.
- Quantum Mechanics, A. K. Ghatak, S. Lokanathan, Laxmi Publications.
- Nanotechnology: Principles and Practices, Dr. S. K. Kulkarni, Capital Publishing.
- Physics for Scientists and Engineers with Modern Physics, Serway and Jewett, Cengage Publications.

e-Books:

- 1. Feynman Lecture series: https://www.feynmanlectures.caltech.edu/
- 2. Concepts of Modern Physics, Arthur Beiser: https://nitsri.ac.in/Department/PHYSICS/Beiser_Modern_Physics.pdf

MOOC / NPTEL/YouTube Links:

- 1. Lectures by Walter Lewin: <u>https://www.youtube.com/channel/UCiEHVhv0SBMpP75JbzJShqw</u>
- 2. Quantum Mechanics Lecture Series by Prof. H. C. Verma: <u>https://www.youtube.com/playlist?list=PLWweJWdB_GuISnGkAafMpzzDBvTHg02At</u>

	S First	Savitribai Phule F Year of Engineeri	Pune University ng (2024 Pattern)	
C	ourse Code: BSC	C-103-BES Cours	e Name: Enginee	ering Chemis	stry
Tea	iching Scheme	Credit	Exa	amination Sch	eme
Theory Practical	: 03 Hours/W : 02 Hours/W	eek 03 feek 01	CCE End-Semester Term Work		30 Marks 70 Marks 25 Marks
Prerequisite	Courses, if any:	Types of titrations,	structure property re	elationship, cla	ssification and
properties of	polymers, electroma	gnetic radiation, elect	rochemical series.		
Course Obje	ectives:				
To acquire kn	nowledge of water qu	ality analysis technol	logy and electro-analy	ytical technique	es for chemical
analysis. Lea	rn about specialty po	lymers and nanomate	rials. Study convention	onal and alterna	ative fuels, and
understand co	prrosion mechanisms	and prevention meth	ods.		
Course Outc	comes:				
After success	ful completion of the	e course, learner will	be able to:		
CO1: Under	stand the practical a	pproaches and technic	ques required to effec	ctively monitor	water quality.
CO2: Select	appropriate electro a	nalytical techniques f	or understanding the	materials.	
CO3: Demo	onstrate the struct	ure and properties	of advanced engine	eering materia	ls for various
technological	applications.				
CO4: Analyz	ze different types of	conventional and alter	rnative fuels.		
CO5: Explai	n causes of corrosio	n and methods for mi	nimizing corrosion.		
		Course Co	ontents		
τ	Unit I	Wa	ater Technology		(08 Hours)
Impurities in	water, hardness of v	vater: Types, Units an	d Numerical. Determ	ination of hard	ness (by EDTA
method using	molarity concept) a	nd alkalinity, numerio	cal. Ill effects of hard	water in boiler	s - priming and
foaming, scal	e and sludge. Water	treatment: i) Zeolite	method and numerica	l ii) Deminerali	ization method.
Purification of water: Reverse osmosis and Electrodialysis. Modern technique for /of atmospheric water					
generation.					
U	J nit II	Instrumen	tal Methods of Anal	ysis	(08 Hours)
Introduction: selective elec	Types of reference trode (solid membra	electrode (calomel e ne electrode)	lectrode), indicator e	lectrode (glass	electrode), ior
[A] Conduct	cometry: Introduction	on, conductivity cell,	conductometric titrat	tions of acid ve	ersus base with
titration curve	e (Strong acid-Stro	ng hase) Application	s of conductometry		

[B] pHmetry: Introduction, standardization of pH meter, pH metric titration of strong acid versus strong base with titration curve and its applications.

.

[C] UV-Visible Spectroscopy: Introduction, statement of Beer's law and Lambert's law, Electronic transitions in organic molecule, terms involved in UV-visible Spectroscopy. Instrumentation (double beam) and its applications. Numerical: Based on Absorption laws i.e. Molar absorptivity and concentration.

Unit IIIAdvanced Engineering Materials(08 Hours)

A] Polymers: Introduction, Definition Polymer, Monomer, Functionality of monomers, Classification of polymer (Thermal Behavior-Thermoplastics and Thermosetting).

Specialty polymers: Introduction, preparation, properties and applications of the following polymers: 1. Engineering Thermoplastic: Polycarbonate, 2. Bio-degradable polymers: Poly (hydroxybutyrate-hydroxyvalerate), 3. Conducting Polymer: Polyacetylene.

[B] Nanomaterials: Introduction, classification of nanomaterials based on dimensions (zero dimensional, one-dimensional, two-dimensional and three-dimensional), structure, properties and applications of graphene and carbon nanotubes, quantum dots (semiconductor nanoparticles).

Unit IV	Energy Sources	(08 Hours)

Introduction (definition, classification of fuel based on chemical reactions and characteristics of an ideal fuel), Calorific value, Higher calorific value and Lower calorific value, Determination of calorific value: Principle, construction and working of Bomb calorimeter and Boy's gas calorimeter and numerical, Solid fuel. Coal: Analysis of Coal-Proximate and Ultimate analysis, numerical, Alternative fuels: Power alcohol and biodiesel. Hydrogen gas as a future fuel. Lithium Ion Battery, construction, working, advantages, applications.

Unit V Corrosion and its Prevention	(08 Hours)
-------------------------------------	---------------------

Introduction, Types of corrosion – Dry and Wet corrosion, mechanism of dry corrosion, nature of oxide films and Pilling-Bedworth's rule, wet corrosion – mechanism: hydrogen evolution and oxygen absorption, Factors influencing rate of corrosion. Methods of corrosion control and prevention: Cathodic Protection (Sacrificial Anode and Impressed Current), metallic coatings and its types, surface preparation, methods to apply metallic coatings-hot dipping, electroplating. Corrosion Resistant / Anti corrosive paints.

List of Laboratory Experiments (Any 8 experiments from the given list).

1. To determine hardness of water by EDTA method.

2. To determine alkalinity of water.

3. To determine strength of strong acid using pH meter

4. To determine maximum wavelength of absorption of CuSO4/FeSO4/ KMnO4, verify Beer's law and find unknown concentration of given sample.

- 5. Titration of a mixture of weak acid and strong acid with strong base using conductometer.
- 6. Preparation of polystyrene/phenol-formaldehyde/urea-formaldehyde resin.
- 7. To determine molecular weight/radius of macromolecule polystyrene/ polyvinyl alcohol by viscosity measurement.
- 8. Proximate analysis of coal
- 9. To coat copper and zinc on an iron plate using electroplating.
- 10. Preparation of biodiesel from oil.
- 11. Colloidal synthesis of 2-6 or 3-5 semiconductor quantum dots nanoparticles.

Learning Resources

Text Books:

1. Textbook of Engineering Chemistry by Dr. S. S. Dara, Dr. S. S. Umare, S. Chand & Company Ltd.

2. Engineering Chemistry by O. G. Palanna, Tata Magraw Hill Education Pvt. Ltd.

3. Textbook of Engineering Chemistry by Dr. Sunita Rattan, S. K. Kataria& Sons Publisher.

Reference Books:

1.Basic Concept of Analytical Chemistry, 2ed, S. M. Khopkar, New Age-International Publisher.

2.Instrumental Methods of Chemical Analysis, G. R. Chatwal& S. K. Anand, Himalaya Publishing House.

3.Spectroscopy of organic compounds, 2ed, P. S. Kalsi, New Age-International Ltd., Publisher.

4.Polymer Science, V. R. Gowarikar, N. V. Viswanathan, jayadev Sreedhar, Wiley Eastern Limited.

5. Inorganic Chemistry, 5ed, Shriver and Atkins, Oxford University Press.

6. Fundamentals of Nanotechnology, G. L. Hornyak, J. J. Moone, H. F. Tihhale, J. Dutta, CRC press.

e-Books:

- 1. <u>https://chem.nju.edu.cn/_upload/article/files/b5/6f/01f0f2434d708df797208aea2613/83f2b441-65ee-44a6-ac47-ed21db462c5d.pdf</u>.
- 2. <u>https://edisciplinas.usp.br/pluginfile.php/5955761/mod_resource/content/1/CORROSION_AND</u> CORROSION_CONTROL_An_Intro%20%20Revie%20and%20Uhlig.pdf

MOOC / NPTEL/YouTube Links:

1. https://nptel.ac.in/courses/113104082

Unit II

	Savitribai Phule Pune University					
Cour	First Year of Engineering (2024 Pattern)					
Course Code: ESC-101-ETC Course Name: Basic Electronics Engineering Teaching Scheme Credit Examination Scheme						
Theory Practical	: 02 Hours/Week : 02 Hours/Week	02 01	CCE : 30 N End – Sem : 70 N Term Work : 25 N	/arks /arks Marks		
Prerequisit Basic Physic Electronics, Companion	e Courses, if any: cs and Mathematics, Ser Sensors and Transducer Course, if any: Labor	niconductor Physics, s atory Practical	Digital Electronics, Circuit	Гheory, Analog		
Course Obj 1. To under	ectives: stand the working princ	ciples of PN junction	diode and Special purpose d	iodes.		
2. To study	the operating principle a	and applications of B	ipolar Junction Transistors &	ι MOSFET.		
3. To learn	the concepts of various	logic gates, digital ci	cuits, Microprocessor & Co	ntroller.		
4. To under	stand the concepts of C	pamp, its application	s and electronic Instruments			
5. To know	the methods of measure	ment of physical para	ameters using sensors and tra	insmission with		
the help o	f communication system	ns.				
Course Out	tcomes:					
On completi CO1: Know	on of the course, learner about the working of H	r will be able to: P-N Junction diode ar	nd its application as rectifier	& switch, basics of		
LED & Pho	todiode.					
CO2: Unde	rstand the working of H	BJT & MOSFET, the	r characteristics & compare.			
CO3: Learn	n logic gates & realization	on of the digital circu	its.			
CO4: Unde	rstand the functioning of	of Opamp and electro	nic instruments.			
CO5: Selec	t sensors based on their	working principle f	or specific applications and	its implementation		
with Comm	nunication system.					
		Course Con	tents			
J	Unit I	Diodes and	Applications	(06 Hours)		
Evolution of Electronics, Current trends in Electronics, Impact of Electronics in industry and society.						
Introduction to active and passive components.						
P-N Junction Diode: P-N Junction diode construction and its working in forward and reverse bias						
conditions, V-I characteristics of P-N junction Diode, Diode as a switch, Half wave rectifier, Full wave						
and Bridge rectifier.						
Special pur	pose diodes: Light Em	itting Diode (LED) a	and photo diode along with	V- I characteristics		
and their applications.						
#Exemplar LED TV, IR-Remote Controller, Rolling Displays, SMPS, Mobile & Laptop Chargers						

Transistors and Technology

(06 Hours)

Bipolar Junction Transistor: Construction, type, Operation, V-I Characteristics in common emitter mode, BJT as switch and Common Emitter(CE) amplifier.

Enhancement Metal Oxide Semiconductor Field Effect Transistors (EMOSFET): Construction,

Types, Operation, V-I characteristics, MOSFET as switch & amplifier. Introduction to VLSI Technology, Feature size/Channel Length, N Well method of VLSI CMOS manufacturing.

#Exemplar	Audio Amplifier / PA System, CMOS ICs in Cell phone & Laptops, Pen Drives.		
Unit III	Logic Gates and Digital Circuits	(06 Hours)	

Number System: Introduction of Binary, Decimal, Octal, Hexadecimal, Conversion of Binary to Decimal, Decimal to Binary, Binary addition.

Logic Gates - AND, OR, NOT, XOR, XNOR. Universal Gates – NAND, NOR. De-Morgan's theorem. **Logic circuits -** Half & Full adders. SR, JK, T & D Flip Flops.

Introduction to Microprocessor and Microcontroller (Only block diagram and explanation). Digital IC design flow, IC Fabrication process flow.

#Exemplar	Memories in Cell Phone, Laptop, Pen drive, ECU in Advanced car,		
_	Automation in manufacturing using PLC, Arduino Boards.		
Unit IV	Unit IV Operational Amplifier and Electronic Instruments		

Operational amplifier: Functional block diagram of operational amplifier, Ideal & practical values of performance parameters, Op-amp applications: Inverting, Non-inverting amplifier.

Electronic Instruments: Block diagram of Digital Multimeter, Function Generator, Digital Storage Oscilloscope (DSO), DC power supply.

#Exemplar	Domestic Energy Meter, Battery Charging Station, ICU Hospital.	Monitor in
Unit V	Sensors and Communication Systems	(06 Hours)

Classification of sensors: Active /Passive Sensors, Selection Criteria/Characteristics of sensor. Motion Sensors (LVDT), Temperature Sensors (Thermocouple, RTD), Mechanical Sensors (Strain Gauge), Biosensors. Block diagram of IoT based Data Acquisition and Automation System.

Communication Systems: Block Diagram, Communication Media: Wired and Wireless, Electromagnetic Spectrum, Cellular concept, Block diagram of GSM system.

	Digital Thermometer, Weighing Machine, Green House Automation in
#Exemplar	Agricultural, Home Automation. 4G & 5G Technology, Satellite
	Communication, Radar/Military Communication

List of Laboratory Experiments (Any 8 experiments from the given list)

Electronic Components:

Study of Active and Passive components

- 1. a) Resistors (Fixed &Variable), Calculation of resistor value using color code.
 - b) Capacitors (Fixed &Variable)
 - c) Inductors, Calculation of inductor value using color code.

	d) Devices such as Diode, BJT, MOSFET, various IC packages				
	e) Switches & Relays				
	Measurements using various measuring instruments:				
	a) Setup CRO and function generator for measurement of AC & DC voltages and frequency				
2.	b) Measure Voltage, Resistance using digital Multimeter. Also use Multimeter to check diode,				
BJT.					
3.	V-I characteristics of P-N Junction Diode (Study the datasheet of typical PN junction diode)				
4.	Rectifier circuits: Implement DC Regulated Power Supply using bridge rectifier & diodes.				
	Build and test Common Emitter (CE) BJT Amplifier Circuit.				
5.	a) Calculate the Gain of CE Amplifier				
	Linear applications of Op-amp:				
6.	Build inverting and non-inverting amplifier using op-amp(Study the data sheet of typical				
	Op-Amp741)				
	Test and verify the truth tables of:				
7.	a) Basic and Universal Gates (Study the datasheet of respective ICs)				
	b) Half & Full Adder				
8.	Study of transducers/sensor (Any3)				
9.	Build and test any circuit using BJT/MOSFET/Op-Amp/Logic Gates using any one sensor.				
10.	Case Study of any one electronics appliances with block diagram, specification etc.				
	Guidelines for Instructor's Manual				
• Th	ne instructor's manual is to be developed as a hands-on resource and reference.				
• Co	opy of Curriculum, Conduction & Assessment guide lines, List of Experiments to be attached.				
	Guidelines for Student's Lab Journal				
The stu	Idents Lab Journal should contain following related to every experiment –				
1.	Title of the experiment				
2.	Objective				
5. 4	Apparatus with their detailed specifications. Brief theory related to the experiment				
- 4 . 5	4. Dher meory related to the experiment. 5. Connection diagram /circuit diagram				
5. 6	Observation table				
7.	Sample calculations for one/two reading.				
8.	Result tabl				
9.	Graph and Conclusions.				
	Guidelines for Laboratory Conduction				
• A	• All the experiments (Any Eight) mentioned in the syllabus are compulsory.				
• U	se of open source software and recent version is to been courage.				

•

Guidelines for Lab/TW Assessment

- Continuous assessment of laboratory work is to be done based on overall performance.
- Each lab assignment/experiment assessment will assign grade/marks based on parameters with appropriate weightage.
- Suggested parameters for overall assessment as well as each laboratory assignment include:
 - \checkmark Timely completion.
 - ✓ Performance.
 - \checkmark Punctuality and neatness.

Learning Resources

Text Books:

- 1. Electronics Devices by Thomas. L. Floyd, 9th Edition, Pearson
- 2. Modern Digital Electronics by R. P. Jain, 4th Edition, Tata McGraw Hill
- 3. Electronic Instrumentation by H. S. Kalsi, 3rd Edition, Tata McGraw Hill
- 4. Sensors and Transducers by D. Patrnabis, 2nd Edition, PHI
- 5. Electronic Communication Systems by Kennedy & Davis, 4th Edition, Tata McGraw Hill
- 6. Mobile Wireless communication by M. Schwartz, Cambridge University Press

Reference Books:

- 1. Digital Fundamentals by Thomas. L. Floyd, 11th Edition, Pearson
- 2. Mobile Communication by J. Schiller, 2nd Edition, Pearson
- 3. Sensors Handbook, by S. Soloman, 2nd Edition.
- 4. CMOS Circuit Design, Layout & Simulation, by Baker, 2nd Edition, Wiley IEEE Press

e-Books:

1. <u>https://www.pearson.com/en-us/subject-catalog/p/electronic-devices-electron-flow-version/P200000001048</u>

MOOC / NPTEL/YouTube Links:

- 1. https://nptel.ac.in/courses/117103063
- 2. https://nptel.ac.in/courses/117103064
- 3. 3. https://archive.nptel.ac.in/courses/106/105/106105166/

	Sav	itribai Phule Pu	ne University		
	First Ye	ar of Engineerin	g (2024 Pattern)		
Course Code	: ESE-102-	ELE Course Na	me: Basic Electric	cal Engineering	
Teaching SchemeCreditExamination Scheme:					
Theory: 02 HoPractical: 02 Ho	urs/Week urs/Week	02 01	CCE End - Semester Term Work	: 30 Marks : 70 Marks : 25 Marks	
Prerequisite Courses, Ohms law, Magnetism,	if any: Elect , EMF, Farada	ric charges and field ay's Laws, Alternation	s, Coulomb's laws, Vo ng current, AC Genera	oltage, Potential, Current, ator, Power.	
Companion Course, if	<mark>f any:</mark> Labor	atory Practical			
Course Objectives:					
To impart the fundame	ental knowled	ge of electrical engin	neering to all the stude	ents of various disciplines	
and give comprehensiv	ve idea about	AC and D C circuit	analysis, working prin	ciples and applications of	
basic electric machines	. The aim is a	also to familiarize stu	dents with different w	viring components, wiring	
schemes and electricity	v bill.				
Course Outcomes:					
CO1: Apply Kirchho circuit analysis. CO2: Analyze the ma	off's Laws, Su	t parameters, self-Inc	and network simplific uctance, mutual Induc	cation techniques for DC	
Forces (EMF's).		4 4 1			
CO3: Calculate AC	quantities usi	ng mathematical equ	ations, waveforms and	l phasor diagrams.	
CO4: Compute the v CO5: Understand th practical applications	voltage, curren ne working pr	nt and power of the g inciple of 1-Phase T	iven 1-phase and 3-ph ransformer, Motors (I	ase AC circuits DC, Induction) and their	
		Course Cont	ents		
Unit I	F	Elementary Concept	ts and DC Circuits	(06 Hours)	
Elementary concepts	Resistance	. EMF. current. pc	tential difference. O	Ohm's law. Overview of	
elementary power syste	em showing st	ages such as Generat	ion. Transmission, and	d Distribution of electrical	
energy					
DC Circuits: Classification of electrical networks, simplifications of networks using series-parallel					
combinations and star delta transformation technique. Kirchhoff's Laws and their applications for network					
solutions using loop an	alvsis Super	position theorem		in apprications for network	
#Exemplar Electric power system, Electrical Load Distribution box, Robotics					
Unit II		Electron	nagnetism	(06 Hours)	
Magnetic Circuit: Co	ncept of flux	density, field streng	th, permeability, MM	IF, reluctance, their units,	
and relationships. Simp	ple series mag	netic circuit, compar	ison of electric and m	agnetic circuit.	
Electromagnetic Indu	iction: Farad	ays Laws of electro	magnetic induction, F	leming's right-hand rule,	
statically and dynamically induced emf, self and mutual inductance, coefficient of coupling. Energy stored					

in magnetic field. **#Exemplar**

Loudspeaker, Motor, Generator, Transformer

Unit III	AC Fundamentals	(06 Hours)

Generation of single-phase sinusoidal voltages and currents, their mathematical and graphical representation, Concept of cycle, period, frequency, instantaneous, peak, average and RMS. values, peak factor and form factor. Phase, Phase difference, lagging, leading in phase quantities and their phasor representation. Rectangular and polar representation of phasor.

Study of AC circuits consisting of pure resistance, pure inductance, pure capacitance.

#Exemplar	Generator, Electrical appliances response, Electrical heat	ter, radio
	circuits, capacitor	
Unit IV	AC Circuits	(06 Hours)

Single Phase AC Circuits: Series R-L, R-C and R-L-C circuits, concept of impedance, power factor, phasor diagrams, Voltage, current and power waveforms. Concept of active, reactive and apparent power. Resonance in RLC series circuits.

Three Phase AC Circuits: Concept of three-phase AC symmetrical system, phase sequence, balanced and unbalanced load. Voltage, current and power relations in three phase balanced star and delta connected loads along with phasor diagrams.

#Exemplar	Machine windings, Electric power network	
Unit V	Introduction to Electric Machines	(06 Hours)

Single Phase Transformer: Construction, working principle, EMF equation, transformation ratio, rating, types, losses, regulation and efficiency at different loading conditions.

Electrical Motors :

a) **D.C. Motors**: Construction, working principle, types, voltage equation, characteristics and Applications.

b) **Three Phase Induction Motor**: Working principle using rotating magnetic field theory, types and applications.

c) **Single Phase Induction Motor**: Construction, working principle of single phase Induction motor. Applications of split phase, capacitor start and capacitor run motors.

#Exemplar Mobile charger, electric substations, UPS, Lathe machine, compressor, lifts, hoists, ceiling fan etc

List of Laboratory Experiments (Any 8 experiments from the given list).

- 1. To study safety precautions while working on electrical systems, handling of various equipment's such as rheostat, multi-meter, ammeters, voltmeters, wattmeter's etc.
- 2. Study of wiring materials, switch board and different wiring schemes. (Simple wiring & staircase wiring).
- 3. To verify Kirchhoff's laws experimentally
- 4. To verify Superposition theorem experimentally
- 5. To determine efficiency and regulation of transformer by using direct loading test experimentally
- 6. To measure steady state response of series RL and RC circuits experimentally

- 7. To study RLC series resonance experimentally
- 8. To verify the relation between phase and line quantities in three phase balanced star delta connections of load experimentally
- 9. Study of cut view section of single phase/ three phase Induction motor.
- 10. To measure insulation resistance by using megger and study of Single-Phase LT electricity bill.

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and reference. The instructor's manual needs to include prologue (about university / program/ institute / department / foreword / preface), University syllabus, conduction & Assessment guidelines, topics under consideration-concepts, objectives, and outcomes.

Guidelines for Student's Lab Journal

The students Lab Journal should contain following related to every experiment -

- 1. Title of the experiment
- 2. Objective
- 3. Apparatus with their detailed specifications
- 4. Brief theory related to the experiment
- 5. Connection diagram /circuit diagram
- 6. Observation table
- 7. Sample calculations for one/two reading
- 8. Result table
- 9. Graph and Conclusions.

Guidelines for Laboratory/ TW Assessment

- 1. Continuous assessment of laboratory work is to be done based on overall performance and Laboratory performance of student.
- 2. Each Laboratory assignment assessment should assign grade/marks based on parameters with appropriate weightage.
- 3. Suggested parameters for overall assessment as well as each Laboratory assignment includetimely completion, performance, efficiency, punctuality, and neatness.

Learning Resources

Textbooks:

- 1. B.L. Theraja, A K Theraja "ABC of Electrical Engineering", S Chand Publications, 2012
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill Education, 2nd edition 2019.

Reference Books:

- 1. C. L. Wadhwa, "Basic Electrical Engineering", New Age International (P) Limited 5th edition 2024
- 2. S K Bhattacharya, "Electrical Machines", McGraw Hill Education, 2nd edition, 2008
- 3. T. K. Nagsarkar, M. S. Sukhija, "Basic Electrical Engineering", Oxford University Press, 2nd edition 2018.

e-Books: <u>https://www.schandpublishing.com/books/tech-professional/electrical-engineering-electronics/abc-electrical-engineering/9788121939096/</u>

MOOC / NPTEL/YouTube Links: <u>https://nptel.ac.in/courses/108105112</u>

	S: First Y	avitribai Ph Zear of Eng	ule Pune Univer ineering (2024 P	sity attern)	
C	ourse Code: ESC-1	103-MEC 0	Course Name: E	ngineeri	ng Graphics
Tea	ching Scheme	Credit	E	xaminatio	n Scheme
Theory Practical	: 02 Hours/Week : 02 Hour/Week	02 01	CCE End-Semester Term Work	:	30 Marks 70 Marks 25 Marks
 Prerequisit Basi Basi Dev Com 	c Geometric Shapes c geometrical measure iation of line, circle and puter literacy. jectives:	ments (linear a d polygon, Co	and angular), Constr -ordinate geometry.	uction	
This course	aims to cultivate stude	nts' ability to c	conceptualize physic	al objects	and effectively translate
them onto p	paper for communication	on in engineer	ing contexts. It focu	ses on en	hancing manual drawing
skills, honi	ng drawing interpreta	tion abilities,	and fostering a p	oractical	understanding of objec
dimensions.	Additionally, the con	urse seeks to	introduce students	to essent	tial drawing and design
software too	ols for a well-rounded s	skill set.			
Course Ou	tcomes:				
On complet	ion of the course, learn	er will be able	e to:		
CO 1 – Exp constructior	blain the fundamentals and apply the knowle	of Engineerin dge of Project	g Graphics and basi ions, Methods to pre	c principle epare the o	es of geometric drawings for points and
lines.					-
CO 2 - Ap	ply the types of Project	tions, Methods	s to prepare the draw	vings for p	blanes.
CU 3 - C01	draw the development	of the lateral s	urface of solid	application	n of various engineering
CO 4 - Apr	I w the concept of ortho	or the lateral s	ction of an object to	draw seve	eral 2D views for
visualizing	the physical state of the	e object.			
CO 5 - App	bly the visualization ski	ill to draw an i	sometric projection	from give	en orthographic views.
		Cours	se Contents		
Uni	t I Fund	amentals of H Projection	Engineering Drawin of Point and Line	ng and	(06 Hours)
Fundamen	tals of Engineering D	awing: Introc	luction to drawing ir	struments	s and their uses, Drawing
sheets sizes	and their layouts, Typ	es of Lines, D	imensioning method	ds, Genera	al rules of dimensioning
Projection of	of Point and Line.				
Theory of j	projection - Projection	of points in a	ll possible quadrant	s. Project	ion of line when paralle
to both the r	reference planes. Projec	tions of lines	when it is perpendic	ular to on	e of the reference planes

when line is inclined to one and parallel to other reference plane, Line inclined to both reference planes (first angle projection).

Unit II

Introduction, Projection of plane when plane is Parallel to one and perpendicular to other, Projection of plane when plane is inclined to one plane and perpendicular to other Projections of planes when it is inclined to both reference planes.

Unit III	Engineering Curves and Development of Lateral	(06 Hours)
	Surfaces	
Engineering Curves:	Conic Sections- Ellipse, Parabola and Hyperbola by dir	rectrix and focus and
rectangle method, Hel	ix (one convolution) on Cylinder and Cone, Cycloid,	Involute of a circle,
Archimedean spiral (or	ne convolution)	
D		

Development of Lateral Surfaces: Introduction, Method of development, development of lateral surfaces of right solids, cube, prisms, cylinder, pyramids, and cone.(No sectioned solids)

Unit IV	Orthographic Projection	(06 Hours)
Introduction, Principle	e of projection, Plane of Projection, Method of P	rojection, Orthographic
Projection First and T	hird angle method of projection, Hidden features, c	urved features, circular
features. etc. Typical p	roblems by first angle projection method	

Unit V	Isometric Projection	(06 H	ours)
Introduction of isomet	ric projection, Isometric lines, planes, non-isometric lines	and planes,	Isometric

scale, Isometric projection and view, Construction of isometric view/ projection from given orthographic views.

List of Laboratory Experiments

Guidelines for Practical Evaluation: Assignment problems to be drawn on A2 size drawing sheet and two problems must be drawn by using any CAD software.

List of Assignments

- 1. Draw two problems on projection of lines
- 2. Draw two problems on projection of planes
- 3. Draw two problems on Engineering curves and development of lateral surfaces
- 4. Draw two problems on Orthographic projections
- 5. Draw two problems on Isometric projections

Learning Resources

Text Books:

1. Bhatt, N. D. and Panchal, V. M., (2016), "Engineering Drawing", Charotar Publication, Anand, India

2. K. Venugopal, K, (2015), "Engineering and Graphics", New Age International, New Delhi

3. Jolhe, D. A., (2015), "Engineering Drawing with introduction to AutoCAD", Tata McGraw Hill, New Delhi

4. Rathnam, K., (2018), "A First Course in Engineering Drawing", Springer Nature Singapore Pte. Ltd., Singapore

Reference Books:

1. Madsen, D. P. and Madsen, D. A., (2016), "Engineering Drawing and design", Delmar Publishers Inc., USA

2. Bhatt, N. D., (2018), "Machine Drawing", Charotor Publishing House, Anand, India

3. Dhawan, R. K., (2000), "A Textbook of Engineering Drawing", S. Chand, New Delhi

4. Luzadder, W. J. and Duff, J. M., (1992), "The Fundamentals of Engineering Drawing: With an

Introduction to Interactive Computer Graphics for Design and Production", Peachpit Press, USA

5. Giesecke, F. E., Mitchell, A., Spencer, H. C., Hill, I. L., Loving, R. O., Dygon, J. T., (1990), "Principles of engineering graphics", McMillan Publishing, USA

e-Books:

MOOC / NPTEL/YouTube Links: NPTEL Course: Engineering Graphics and Design https://onlinecourses.nptel.ac.in/noc21_me128/preview

NPTEL Course: Introduction and Geometric Construction https://archive.nptel.ac.in/content/storage2/courses/112103019/module1/lec3/1.html

NPTEL Course: Computer Aided Design and Manufacturing". https://archive.nptel.ac.in/courses/112/102/112102101/

Note: Some units of theory can be taught during practical sessions and more emphasis can be given on hands on skills.

5	Savitribai Phu	le Pune Univer	rsity	
Firs Course Coder ESC	t Year of Engi	neering (2024]	Pattern)	Techenica
Course Code: ESC		burse Name: E	ngineering N	lechanics
Teaching Scheme	Credit	I COF	Examination Sch	neme
Theory: 2 Hours/WeekPractical: 2 Hours/Week	02 01	CCE End-Semester Term Work	: 3 : 7 : 2	0 Marks 0 Marks 5 Marks
 Prerequisite Courses, if any: Basic Calculus, Trigono acceleration with Fundar Companion Course, if any: La 	ometry, Geometri nental knowledge aboratory Practi	cal expressions, 1 of Engineering M cal.	Laws of motion athematics and	n, Concept of mass, Physics.
Course Objectives: The objectives of this course i and its application to the real-w Moments and know their applic Course Outcomes: On completion of the course, let CO1. Understand basic concep CO2. Apply concept of free bo CO3. Analyze the practical exa CO4. Analyze rectilinear and c CO5. Apply Newton's second b	s to make studen world problems, s ations in allied s arner will be able of of forces, mom dy diagram for sta mple involving fur urvilinear motion law, work energy	ts to learn basics solve problems in ubjects. to: ents and couples in atic equilibrium in riction and applica of particle and impulse mom	of engineering volving Forces, n two-dimensio two-dimensior tion of two force tentum principle	Mechanics concepts loads and n force system force system ee members es for particles
	Cours	e Contents		
Unit I	Force syste	ems and its result	ants	(06 Hours)
Introduction, type of motion,	fundamental co	ncepts and princ	iple, force sys	tem, resolution and
composition of forces, resultan	t of concurrent for	orce system, mom	ent of a force,	Varignon's theorem,
resultant of parallel force system	n, couple and resu	ltant of general fo	rce system. Intr	oduction, centroid of
basic figures, centroid of compo- theorem, perpendicular axis the	osite figure, mome orem, moment of	ent of inertia of sin inertia of compos	nple geometrica ite figure.	l figure, parallel axis
Unit II	F	Cquilibrium		(06 Hours)
Introduction, free body diagram principle, equilibrium of concu type of beam and support reacti	n, equilibrium of o rrent, parallel and on.	coplanar forces, eo d general force sy	quilibrium of tw stem, type of lo	vo forces, three force bad, type of support,
UNIT III	Frict	ion and trusses		(06 Hours)
Introduction, sliding and rolling	friction, laws of c	oulomb friction, c	coefficient of fri	ction, angle of repose,
angle of friction, cone of friction	n, friction on incli	ned plane, ladder	friction and bel	t friction.
Trusses: two force and multi for zero force members, method of	orce member, ass joint and method	umption of analys of section.	is, analysis of t	truss, identification of

.

First Year Engineering – 2024 Pattern - Faculty of Science and Technology

		(0.5.77
UNIT IV	Kinematics of particle	(06 Hours)
Introduction, basic conce	ept, rectilinear motion: motion with uniform accel	leration, gravitational
acceleration and variable a	cceleration, curvilinear motion: rectangular components	s, motion of projectile,
normal and tangential com	ponents.	
UNIT V	Kinetics of particle	(06 Hours)
Introduction, Newton's se	econd law of motion, equation of motion, Newton'	s law of gravitation,
application of Newton's s	second laws to rectilinear and curvilinear motion, c	onservative and non-
conservative forces, work	energy principle, conservation of energy, impulse more	mentum principle and
impact		
	List of Laboratory Experiments	
Journal consist of the fol	lowing	
A. Compulsory experime	ents as per following list	
1. Verification of the Po	lygon law of forces	
2. To find support reacti	on of beam	
3. To determine coeffici	ent of friction	
4. Determination of coe	fficient of restitution	
B. Graphical Solution of	the following	
1. Equilibrium of concu	rrent force system	
2. Equilibrium of paralle	el force system	
3. Forces in the member	of pin jointed truss	
4. Moment of Inertia		
C. Assignment on each u	nit: minimum four example on each unit	
The students Lab Journs	Guidelines for Student's Lab Journal	mt
1. Title of the experim	nent	int —
2. Objective		
3. Apparatus with the	ir detailed Drawing.	
4. Brief theory related	1 to the experiment.	
5. Observation table		
6. Sample calculation	s for one/two reading.	
7. Result table		
8. Graphs (if any) and	1 Conclusions.	
	Guidelines for Laboratory/ TW Assessment	
a. Continuous assessi	ment of laboratory work is to be done based on over	rall performance and
Laboratory perform	nance of student.	
b. Each Laboratory as	ssignment assessment should assign grade/marks based	on parameters with
appropriate weighta	age.	
Suggested parameter	ers for overall assessment as well as each Laboratory ass	signment include
timely completion,	performance, efficiency, punctuality, and neatness.	

\$

Learning Resources

Text Books:

- 1. Engineering Mechanics, Ferdinand Singer, 3rd edition, Harper and Row
- 2. Engineering Mechanics (Statics and Dynamics) by Hibbeler R. C., Pearson Education

Reference Books:

- 1. Engineering Mechanics, S Timoshanko and Young, Tata McGraw Hill Education Pvt. Ltd. New Delhi.
- 2. Vector Mechanics for Engineers Statics, Beer and Johnston, Tata McGraw Hill
- 3. Vector Mechanics for Engineers Dynamics, Beer and Johnston, Tata McGraw Hill.
- 4. Engineering Mechanics Statics and Dynamics, Meriam J. L. and Kraige L.G., John Wiley and Sons

Savitribai Phule Pune University First Year of Engineering (2024 Pattern)

Course Co	ode: ESC-105-CON	A Course Name: Fu	indamentals of Programm	ning Languages
Tea	ching Scheme	Credit	Examination So	cheme
Theory Practical	: 2 Hours/Week : 2 Hours/Week	02 01	CCE End – Semester Term Work	: 30 Marks : 70 Marks : 25 Marks
Prerequisite Basic Basic	e Courses, if any: cs of Computers c Mathematics	damentals of Programm	aing Languages Lab	
Course Obi	iectives:			
	inderstand the fundam	pental Concepts of C P	rogramming	
2 To 2	acquire knowledge and	d Compare usage of Or	perators and Expressions in C	Programming
3 To a	apply Control Flow st	uctures in C Program	ning for Problem solving	Tiogramming
4 To d	lesign a solution using	Arrays Character an	d String Arrays in C program	ming
5 To (design a develop solut	tion for simple comput	ational problems using User	Defined Functions
3. 100	structures in C Progra	amming	ational problems using User	Defined I difetions
anu	structures in C 1 logia	ummig		
Course Out	comes:			
On completi	ion of the course stud	ents will be able to:		
	sign algorithms for si	imple computational pr	oblams	
	sign algorithms for si	and Operators and Ever		
CO2: 10 US	re mathematical, Logi	cal Operators and Expr		
CO3: 10 ap	piy Control Flow stru	A success for decision mai	ang.	
CO4: 10 de	sign a solution using	Arrays, Character and	String Arrays.	
CO5: To De	esign and apply user d	efined functions and st	ructures.	
l I	Unit I	Introduction to P	rogram Planning & C	(06 Hours)
Program D	esign Tools: Art of Pi	rogramming through A	lgorithms, Flowcharts.	
Overview of	f C: History and impo	rtance C, Character Set	, C Tokens, Keywords and Ide	ntifiers, Constants,
Variables, D	Data types, Declaration	n of variables, Storage	Class, Assigning Values to v	variables, Defining
Symbolic Co	onstants, declaring a V	/ariable as Constant, D	eclaring a Variable as Volatil	e.
#Exemplar/	Case Studies St	udy of "C" Program co	mpilation Process, testing and	l debugging.
- T	J nit II	Operators a	and Expressions	(06 Hours)

Operators and Expressions: Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operators, Increment and Decrement Operators, Conditional Operators, Bitwise Operators,

First Year Engineering – 2024 Pattern - Faculty of Science and Technology

Spec	ial Operators. Arithmeti	c Expressions, Evaluation of Expressions, Preceden	ce of Arithmetic
Oper	cators, Operator Precedence	ce and Associativity, Mathematical Functions.	
#Exc	emplar/Case Studies	Study of Infix, Prefix and Postfix expressions.	
	Unit III	Control Flow	(06 Hours)
Deci	sion Making and Bra	nching: Simple If Statement, If-Else,Else-If,Switch	Statement, Goto
State	ement		
Deci	sion Making and Loopin	ng: While Statement, Do-While, For Statement, Break an	d Continue
#Exe	emplar/Case Studies	Design simple calculator and Generating a Calendar	
	Unit IV	Arrays	(06 Hours)
Arra	ays: One Dimensional A	Arrays, Declaration of One-dimensional Arrays, Initia	alization of One-
dime	ensional Arrays, Two –din	nensional Arrays, Initialization of Two- dimensional Arr	ays.
Cha	racter Arrays and Strin	gs: Declaration and Initialization String Variables, Rea	ding Strings from
Tern	ninal, Writing Strings to S	creen, Putting Strings Together, Comparison of Two Str	ings, Introduction
to St	ring handling Functions		
#Exc	emplar/Case Studies	Matrix multiplication	
	Unit V	User Defined Functions	(06 Hours)
User	· Defined Functions: Nee	d for User-defined Functions, A Multi-Function Program,	Elements of User
defir	ned Functions, Definition	of Functions, Return Values and their Types, Functio	n Calls, Function
Decl	aration, Category of Fund	ctions: No Arguments and no Return Values, Argumen	ts but No Return
Valu	es, Arguments with Retu	urn values, No Arguments but Returns a Value, Func	tions that Return
Mult	iple Values, Nesting of Fu	unctions, Recursion	
Stru	ctures :		
Wha	t is a Structure? Struct	ure Type Declarations, Structure Declarations, Refer	rencing Structure
Men	bers, Referencing Whole	Structures, Initialization of Structures.	
#Exc	emplar/Case Studies	Tower of Hanoi, Generation of Monthly balance sheet	
	List of Laboratory Expe	eriments/Assignments (Any 6 to 8 laboratory assignments)	ents) based on
		Programming	
1	To accept the number an	nd Compute a) square root of number, b) Square of numb	er, c) Cube of
	number a) check for prin	me, a) factorial of number e) prime factors.	(h - 17)h '
2	series.	number of Fibonacci numbers to be generated and print	the Fibonacci
3	To accept an object mas	s in kilograms and velocity in meters per second and disp	olay its
	Momentum. Momentum velocity.	is calculated as e=mc ² where m is the mass of the objec	t and c is its

•

	In array do the following:
4	1. Find given element in array
	2. Find Max and Min element
	3. Find frequency of given element in array
	4. Find Average of elements in Array.
5	Write a C program for employee salary calculation given, Basic, H.R.A. 20 % of Basic and D.A.
5	150 % of Basic.
6	To accept a student's marks for five subjects, compute his/her result. Student is passing if he/she
	scores marks equal to and above 40 in each course. If student scores aggregate greater than 75%,
	then the grade is distinguished. If aggregate is $60>=$ and <75 then the
	Grade of first division. If aggregate is 50>= and <60, then the grade is second division. If aggregate
	is $40>=$ and <50 , then the grade is third division.
7	To accept two numbers from user and compute smallest divisor and Greatest Common
	Divisor of these two numbers.
0	Write a C program that accepts a string from the user and performs the following string
8	operations- i. Calculate length of string ii. String reversal iii. Equality check of two
	Strings iii. Check palindrome ii. Check substring
9	Create Structure EMPLOYEE for storing details (Name, Designation, gender, Date of Joining
-	and Salary), and store the data and update the data in structure.
10	Create class STORE to keep track of Products (Product Code, Name and price). Display menu of
	all products to users. Generate bills as per order.
	Mini-Projects
1	Calculator with basic functions. Add more functionality such as graphic user interface and
_	
	Complex calculations.
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6.
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an
2	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated
2 3	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated numbers, and to then compare the numbers.
2 3 4	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated numbers, and to then compare the numbers. To calculate the salary of an employee given his basic pay (take as input from user). Calculate
2 3 4	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated numbers, and to then compare the numbers. To calculate the salary of an employee given his basic pay (take as input from user). Calculate gross salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let
2 3 4	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated numbers, and to then compare the numbers. To calculate the salary of an employee given his basic pay (take as input from user). Calculate gross salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employees pay professional tax as 2% of total salary. Calculate net salary payable after
2 3 4	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated numbers, and to then compare the numbers. To calculate the salary of an employee given his basic pay (take as input from user). Calculate gross salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employees pay professional tax as 2% of total salary. Calculate net salary payable after deductions.
2 3 4	Complex calculations. Program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated numbers, and to then compare the numbers. To calculate the salary of an employee given his basic pay (take as input from user). Calculate gross salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employees pay professional tax as 2% of total salary. Calculate net salary payable after deductions. rning Resources for Practical

•

Reference Books:

- 1. B. S. Gottfried, Programming with C (Schaum's Outline Series), 2nd ed. McGraw-Hill, 1996.
- 2. S. C. Kochan, Programming in C, Sams Publishing, 3rd ed. 2004.
- 3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2 nd ed. UK: Prentice Hall, 1988.
- 4. W. Kernighan and B. Pike, The Practice of Programming, UK: Addison-Wesley, 1999
- 5. H. M. Deitel and P. J. Deitel, C: How to program, 8 th ed. Pearson Education, 2015.
- 6. P. Prinz & T. Crawford, C in a Nutshell: The Definitive Reference, 2nd ed., O'Reilly Media, 2016

e-Books: https://studylib.net/doc/25796931/programming-in-ansic--8e---balagurusamy

MOOC / NPTEL/YouTube Links: <u>https://onlinecourses.nptel.ac.in/noc22_cs40/preview</u> : https://onlinecourses.nptel.ac.in/noc23_cs53/preview

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and reference. The instructor's manual needs to include prologue (about University/program/ institute/ department/foreword/ preface etc), copy of curriculum, conduction & Assessment guidelines, topics under consideration- concept, objectives, outcomes, set of typical applications/assignments/ guidelines, and references.

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of prologue, Certificate, table of contents, and handwritten write-up of each assignment (Title, Objectives, Problem Statement, Outcomes, software & Hardware requirements, Date of

Completion, Assessment grade/marks and assessor's sign, Theory-Concept in brief, features of tool/framework/language used, Design, test cases, conclusion. Program codes with sample output of all performed assignments are to be submitted as softcopy.

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journals may be avoided. Use of Drive containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Lab /TW Assessment

Continuous assessment of laboratory work is done based on overall performance and lab assignments performance of students. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Guidelines for Laboratory Conduction

List of laboratory assignments is provided below for reference. The instructor is expected to frame the assignments by understanding the prerequisites, technological aspects, utility and recent trends related to the topic. The assignment framing policy should address the average students and inclusive of an element to attract and promote the intelligent students. The instructor may set multiple sets of assignments and distribute them among batches of students. It is appreciated if the assignments are based on real world problems/applications. Encourage students for appropriate use of coding style, proper indentation and comments.

Use of open source software and recent versions is to be encouraged.

In addition to these, instructors may assign one real life application in the form of a mini-project.

based on the concepts learned. Instructors may also set one assignment or mini-project that is suitable to each branch beyond the scope of the syllabus.

	Savitribai Phule Pune University								
	First Year of Engineering (2024 Pattern)								
	Course Code: v SE-101 Course Name: Manufacturing Practice Workshop Teaching Scheme Credit Examination Scheme								
Pra	Practical : 02 Hours/Week 01 Term Work : 25 Marks								
Pre	Prerequisite Courses, if any:								
	 Basic Science 								
	Drawing Drawing								
	1 To acquire the basic know	ledge of Machine To	ole						
	2. To inculate the basics of	various manufacturin	a processes						
	2. To import practical acpost	a of Machine Toola a	nd Manufacturing proc	passage used in industrial					
	5. To impart practical aspects	s of Machine Tools a	nd Manufacturing proc	esses used in mousural					
		1 1 1	• • • • •	. 1 1 1.					
	4.10 develop the skill throu	ign nands-on practice	es using hand tools, po	ower tools, machine tools in					
	manufacturing and assembly	shop							
Col	urse Outcomes:								
On	completion of the course, lea	arner will be able to:							
C	O1 Illustrate various section types of tools and mag	ions of a typical work chinery commonly fo	shop and different und in a workshop	2-Understand					
C	O2 Explain the importance	ce of workshop safety	and apply general	3-Apply					
C	workshop safety rules O3 Demonstrate proficier	s and guidelines.	techniques such as	3-Apply					
	sawing, shearing, and	laser cutting.							
C	O4 Plan and complete a incorporating shearing	simple sheet metal j	ob from start to finish	n, 3-Apply					
C	O5 Describe the applicati	ons, advantages and o	operation of advanced	2-Understand					
C	computerized machine O6 Apply 3D Printing Te	e tools in modern ma chnology including s	nufacturing. etup operation and	3-Apply					
	post-processing to pri	nt simple mechanical	component.	5 119913					
	List	t of Laboratory Exp	eriments/Assignment	8					
01	Draw a typical layout of wo	orkshop with arranger	ment of equipment's co	onsidering a specific					
	application								
	Identify and explain the fol	lowing safety related	consideration,						
	1) Potential hazards pr	1) Potential hazards present in workshop							
02	2) General workshop s	2) General workshop safety rules and guidelines							
	3) List various safety devices used in workshop								
	Note : Photo evidences of a	bove are expected in	report						
	Develop any Mechanical co	omponent using the to	ools available in the wo	orkshop which includes any					
03	five of he following operati	ions,							
	1) Cutting								

.

	2) Shearing
	3) Bending
	4) Welding
	5) Rivetting
	6) Filing
	7) Drilling
	Note: Product must be usable for Institute of domestic also write a sequence of operation in the report
	with its production time.
	Demonstration (construction and operation) of any one advance machine tool such as CNC turn /
04	mill, VMC, plasma arc machining, Laser cutting, CNC wood router etc.
0.5	Write program on sequence of operations performed to develop any mechanical component using
05	any suitable programming language.
	Create simple 3D models using CAD software and print using 3D printer including pre and post
06	processes (Component manufactured should be related to specific branch)
	Note: Above experiments to be performed in group of four to five students. There should not
	be any repetition of layout/ jobs/ programs and models. For Experiment No. 1 and 2 students
	supposed to visit nearby workshop or industry.
Lea	arning Resources
Tex	xt Books:
	1. H.S.Bawa, "Workshop Practice", Tata McGraw Hill Education (Publisher)
	2. S. K. Hajra Choudhary, Nirjhar Roy, "Element of Workshop Technology: Vol.1 and 2",
	Media Promoters and Publishers Pvt. Ltd., 15th Edition, 2012
Ref	ference Books:
	1. MikellP.Groover, "IntroductiontoManufacturingProcesses", WileyPublications
	2. John,K.C., "Mechanical Workshop Practice", Prentice Hall Publication, New Delhi
	3. Chua Chee Kai, Leong Kah Fai, "3D Printing and Additive Manufacturing: Principles &
	Applications, 4th Edition, world Scientific, 2015.
	4. Automation, Production system & Computer integrated manufacturing, M. P. Groover Person
	India, 2007 2nd edition.
e-B	India, 2007 2nd edition.
e-B MC	India, 2007 2nd edition. Books:- DOC / NPTEL/YouTube Links: -
e-B MC	India, 2007 2nd edition. Sooks:- DOC / NPTEL/YouTube Links: - • NPTEL Course on Fundamentals of Additive Manufacturing Technologies by Prof. Sajan Kapil,
e-B MC	India, 2007 2nd edition. Books:- DOC / NPTEL/YouTube Links: - • NPTEL Course on Fundamentals of Additive Manufacturing Technologies by Prof. Sajan Kapil, IIT Guwahati, <u>https://onlinecourses.nptel.ac.in/noc21_me115/preview</u>
e-B MC	 India, 2007 2nd edition. Books:- DOC / NPTEL/YouTube Links: - NPTEL Course on Fundamentals of Additive Manufacturing Technologies by Prof. Sajan Kapil, IIT Guwahati, <u>https://onlinecourses.nptel.ac.in/noc21_me115/preview</u> NPTEL Course on Fundamentals of Industrial safety by Prof. Thomas, IIT Madras https://www.uoutube.com/wetch?w=2VDeV/bersit/V
e-B MC	 India, 2007 2nd edition. Books:- DOC / NPTEL/YouTube Links: - NPTEL Course on Fundamentals of Additive Manufacturing Technologies by Prof. Sajan Kapil, IIT Guwahati, <u>https://onlinecourses.nptel.ac.in/noc21_me115/preview</u> NPTEL Course on Fundamentals of Industrial safety by Prof. Thomas, IIT Madras <u>https://www.youtube.com/watch?v=3VReVbsmjKI</u> NPTEL Course on Computer Numeric Control Of Machine Tools And Processes by Prof. A. Poylor
e-B MC	 India, 2007 2nd edition. Books:- DOC / NPTEL/YouTube Links: - NPTEL Course on Fundamentals of Additive Manufacturing Technologies by Prof. Sajan Kapil, IIT Guwahati, <u>https://onlinecourses.nptel.ac.in/noc21_me115/preview</u> NPTEL Course on Fundamentals of Industrial safety by Prof. Thomas, IIT Madras <u>https://www.youtube.com/watch?v=3VReVbsmjKI</u> NPTEL Course on Computer Numeric Control Of Machine Tools And Processes by Prof. A. Roy Chaodhary, IIT Kharagpur
e-B MC	 India, 2007 2nd edition. Sooks:- OOC / NPTEL/YouTube Links: - NPTEL Course on Fundamentals of Additive Manufacturing Technologies by Prof. Sajan Kapil, IIT Guwahati, <u>https://onlinecourses.nptel.ac.in/noc21_me115/preview</u> NPTEL Course on Fundamentals of Industrial safety by Prof. Thomas, IIT Madras <u>https://www.youtube.com/watch?v=3VReVbsmjKI</u> NPTEL Course on Computer Numeric Control Of Machine Tools And Processes by Prof. A. Roy Chaodhary, IIT Kharagpur <u>https://www.youtube.com/watch?v=ImtSsDLgAaI&list=PLSGws_74K01KX9YtVZACpOoFYy6oaJIC</u>

.

	Savitribai Phule Pune University						
	First Year of Engineering (2024 Pattern)						
	The second state of the se						
	Teaching Scheme	Credit]	Examination Scheme			
Practica	al : 2 Hour/Week	02	Term Work	: 25 Marks			
Course	Objectives:						
• 1	Understand the core prin	ciples of design think	ing and its role	in engineering.			
• 4	Apply the six hats of designation of the size of the s	gn thinking to analyze	e and solve com	pplex problems.			
• 1	Develop creative and user	-centered solutions to	real-world cha	llenges.			
• 1	Demonstrate effective co	mmunication and col	laboration in m	ultidisciplinary teams.			
• 1	E valuate and analysis des	ign concepts and prot	totypes.				
• 1	Develop a mindset for cor	ntinuous innovation a	nd improvemen	ıt.			
Course	Outcomes:						
On com	pletion of the course, learn	mer will be able to:					
C01	Identify and define pr	oblems from a user's	perspective and	l articulate design criteria.			
CO2	Apply empathy and ol	oservation to gain ins	ights into user 1	needs and behaviors			
CO3	CO3 Generate innovative ideas and solutions through brainstorming and ideation.						
CO4	CO4 Prototype and test design solutions to refine and improve them						
CO5	CO5 Present and communicate design ideas effectively using visual aids and storytelling						
CO6	CO6 Collaborate with peers and industry professionals to address real-world design challenges						
Note: -							
1.	The practical lab is des	igned to provide stud	dents with han	ds-on experience in applying the			
	theoretical concepts the	y have learned in t	he course. The	e session aims to enhance their			
	understanding, critical th	inking, and problem-	solving skills.	(1 hour for explaining the concept			
	and 1 hour for activity/ a	ssignment / group dis	cussion / brains	storming session)			
2.	Incorporating hands-on l	abs with access to va	rious lab and w	vorkshop facilities in the Institute,			
	can enhance the practic	al aspect of the cou	urse and provid	le students with opportunities to			
	prototype and test their d	esigns.					
	L	aboratory Experime	ents/Assignmer	nts			
	Introduction to l	Design Thinking					
**7 *	• Understa	nding the design thinl	king process				
Week	1-2• Role of e	mpathy and user-cent	ric design				
	Practical	Lab: Empathy mappi	ng and user inte	erviews			
	• Assignme	ent I: Problem identif	ication				

•

		Ideation and Creativity				
Wook	2.1	• Techniques for idea generation and brainstorming				
Week	3-4	Practical Lab: Brainstorming sessions				
		• Assignment 2: Idea generation and selection				
		Prototyping and Testing				
Week	5-6	Creating prototypes to validate design concepts				
		Practical Lab: Rapid prototyping				
		• Assignment 3: Prototyping and user testing				
		Analysis and Evaluation				
Week	7-8	• Applying the six hats of design thinking				
		Practical Lab: Six thinking hats analysis				
		• Assignment 4: Six hats analysis of a case study				
		Communication and Collaboration				
		Visual communication and storytelling				
Week	9-10	Group project and industry collaboration				
		Assignment 5: Design project presentation				
		Assignment 6: Reflection and lessons learned				
Learn	ing Res	sources				
Refer	ence Bo	oks:				
1.	Design	Thinking: Understanding How Designers Think and Work by Nigel Cross				
2.	Change	e by Design: How Design Thinking Transforms Organizations and Inspires Innovation" by				
	Tim Bı	rown				
3.	Design	Thinking for Visual Communication" by Ranjan Nayar and Jaidip Subedi				
4.	The De	sign of Everyday Things" by Don Norman• "Design Thinking: Creativity and Innovation"				
	by S. B	alaram				

- 5. Sprint: How to Solve Big Problems and Test New Ideas in Just Five Days" by Jake Knapp
- 6. Creative Confidence: Unleashing the Creative Potential Within Us All" by Tom Kelley and David Kelley (with a foreword by Ratan Tata)

Case Studies:

- Design Thinking in Healthcare: Redesigning a patient's waiting room experience.
- **Design Thinking in Product Development:** The evolution of the smartphone.

• **Design Thinking in Social Innovation:** Improving access to clean drinking water in rural areas.

- Tata Nano: The People's Car: Explore how Tata Motors aimed to revolutionize the automobile industry by creating an affordable and compact car for the masses, known as the Tata Nano.
- Aravind Eye Care System: Investigate how Aravind Eye Care System in India used innovative design thinking to provide high-quality, affordable eye care services to a large population, often in remote areas.
- **Project Shakti by Hindustan Unilever:** Analyze how Hindustan Unilever's Project Shakti empowered rural women in India by turning them into micro-entrepreneurs, distributing Unilever products in their communities.
- Aadhaar: India's Unique Identification Program: Explore how the Aadhaar program used biometric data and design thinking to provide millions of Indians with a unique identification system, enhancing access to government services and benefits.
- Ola Cabs: Transforming Transportation in India: Learn how Ola, an Indian ride-sharing platform, disrupted the traditional taxi industry by applying innovative design thinking to its services and business model.
- Swiggy: Redefining Food Delivery: Investigate how Swiggy, an Indian food delivery platform, leveraged design thinking to enhance the food delivery experience for customers and partner restaurants.
- Lifebuoy: Promoting Hygiene in Rural India: Explore how Lifebuoy, a brand under Unilever, used design thinking to develop innovative marketing campaigns and products to promote handwashing and hygiene in rural India.
- Amul: The White Revolution in India: Analyze how the Amul cooperative transformed the dairy industry in India through a unique business model, design thinking, and innovative marketing strategies
- Flipkart: E-commerce Success Story: Study how Flipkart, one of India's leading ecommerce platforms, employed design thinking to grow its business and offer a wide range of products and services.
- ISRO's Mars Orbiter Mission: Learn about how the Indian Space Research Organisation (ISRO) successfully launched the Mars Orbiter Mission (Mangalyaan) on a limited budget, showcasing innovation and design thinking in space exploration.
- **Designing Google's Self-Driving Car:** Explore how Google used design thinking to develop autonomous vehicles that redefine transportation.
- **Dyson**: Revolutionizing Vacuum Cleaners and Hand Dryers: Investigate how Dyson's innovative design thinking has transformed household appliances.

- **SpaceX**: Advancing Space Exploration Through Design Thinking: Analyze SpaceX's approach to space technology and how it has disrupted the aerospace industry.
- **Red Bull**: Creating an Energy Drink Empire: Learn how Red Bull's unique design thinking approach contributed to the success of their energy drink and brand.
- **McDonald's**: Evolution of Fast Food Service: Study the design thinking principles applied by McDonald's to enhance their customer experience and streamline operations.
- Nest: Reinventing Thermostats and Home Automation: Examine how Nest Labs, a subsidiary of Google, reimagined home automation with their smart thermostats and other products.
- **LEGO:** Building a Design-Centric Toy Empire: Investigate how LEGO has used design thinking to create a global brand that fosters creativity and learning through play.
- **IBM Design Thinking:** A Cultural Transformation: Explore IBM's adoption of design thinking to reshape its corporate culture and enhance its software and services.
- **Starbucks**: Brewing Design Innovation in the Coffee Industry: Analyze how Starbucks incorporates design thinking into its store layouts, product offerings, and customer experiences.
- Amazon: Customer-Centric Design in E-commerce: Discover how Amazon's design thinking philosophy has played a pivotal role in its e-commerce dominance

	Savitribai Phule Pune University						
First Year of Engineering (2024 Pattern)							
To bia Share Course Name: Professional Communication Skills							
Te	aching Scheme	Credit	Exa	amination Scheme			
Tutorial	: 2 Hour/Week	02	Term Work	: 25 Marks			
Prerequis	site Courses, if any:						
• 12	th English - Basic know	wledge of Listening, S	peaking, Reading	g, and Writing. (LSRW) skills.			
Course O	bjectives:						
To train	n the students in acquir	ing interpersonal con	nmunication skills	s by focusing on language skill			
acquisi	tion techniques and erro	or feedback.					
Course O	utcomes:	rner will be able to:					
CO1: Rec	cognize, identify, and ex	spress advanced skills	of Technical Cor	nmunication in English through			
Language	Laboratory.						
CO2: Une	derstand, categorize, di	fferentiate, and infer	listening, speakin	g, reading, and writing skills in			
societal a	nd professional life.						
CO3: Art	iculate and present the	skills necessary to be	a competent Inter	personal communicator.			
CO4: Dec	construct, appraise, and	critique communicat	on behaviors.				
CO5: Ada	apt, negotiate, and facil	itate with multifariou	s socio-economic	al and professional arenas with			
effective of	communication and inte	erpersonal skills.					
Laborato	ory work should cove	er the following gu	ideline topics fo	or conduction of Laboratory			
activities: Introduction to the Language Lab							
	a) The Need for a Language Laboratory						
Unit I	b) Tasks in the Lab						
	c) Writing a Laboratory Notebook						
	Active Listening Skil	lls					
	Basic Listening Skills	: Introduction, the pro	cess, importance	and types of listening. Effective			
	Listening: Principles a	and Barriers. Guidelin	es to increase list	ening.			
Unit II	a) What is Active List	ening?		6,			
	b) Listening Sub-Skill	s—Predicting. Clarif	ving. Inferencing.	Evaluating, Note-taking			
	c) Listening in Busine	ess Telephony	, , , , , , , , , , , , , , , , , , , ,	6. 6			
Unit III	Speaking	I - J					
	~F8						

•

	a) Speaking—Accuracy and Fluency Parameters				
	b) Pronunciation Guide—Basics of Sound Scripting, Stress, and Intonation				
	c) Fluency-focussed activities—JAM (Just a Minute), Conversational Role Plays, Speaking				
	using Picture/Audio Visual inputs.				
	d) Group Discussion: Principles and Practice				
	e) Giving a Presentation—Learning Presentation Basics and Giving Micro Presentations				
	f) Activities to enhance listening Speaking Skills: Introducing yourself, describing a person,				
	place, situation and event, giving instruction, Making inquiries - at a bank, post- office, air-				
	port, hospital, reservation, counter				
	Reading and Writing Skills				
	Effective Reading: Process, types and reading rate adjustment, Tips for improving reading				
	skills, Reading Comprehension.				
	Effective Written Communication: Introduction, Importance of written communication,				
Linit IV	Writing a Book/ small article/ Film Review, Scripting a Short Presentation				
Unit IV	Letter Writing: Types, Formats, Official Correspondence: Memo, Notice and Circulars,				
	Agenda and Minutes,				
	Report Writing: Purpose and Scope of a Report, Fundamental Principles of Report				
	Writing, Project Report Writing, Summer Internship Reports. sentences Precise writing				
	through meticulous editing, proofreading Writing abstracts and conclusions.				
	Workplace Communication				
	Greeting, Welcoming, Dealing with Complaints, Giving Instructions or Directions,				
Linit V	Giving Information: About Various Facilities, Distance, Area, Local Specialties Consultation				
Unit v	and Solution of Problems, Accepting Praises and Criticism, Apologizing. Fluency and				
	Etiquette, Polite sentences and Words, Use of Persuading words, Intonation and Voice				
	Modulation, Developing.				
	List of Laboratory Experiments/Assignments				
Minimum	eight practical/ assignments should be performed to cover entire curriculum of the course.				
The list of	f practical given below is just a guideline.				
1.	Speech/Seminar presentation				
2.	Observation of a recorded seminar and suggestions for improvement.				
3.	Technical Report Writing and presentation.				
4.	Role Plays				
5.	Interview Simulations				
6.	Reading and Listening Comprehension				

•

	7.	Group Discussions
	8.	Resume Building
	9.	Business Correspondence
	10.	Cross-Cultural Communication
	11.	Situational Writing
	12.	SWOT analysis
	13.	Public Speaking Exercises
	14.	Greetings for different occasions.
	15.	Participation in institute/National level Elocution/Essay/G.D. Competitions
		Guidelines for compressive continuous assessment (CCE)
٠	CCE	should support for regular performance of practical by student and his/her regular
	assessi	ment with proper understanding of practical carried out.
•	It is a 1	representative list of practical. The instructor may choose practical as per his requirements
	(so as	to cover entire contents of the course) from the list.
Learn	ing Res	sources
Text I	Books:	
1.	Comr	nunication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson)
2.	Comr	nunication Skills for Technical Students by T.M. Farhatullah (Orient Longman)
3.	Writte	en Communication in English by Saran Freeman (Orient Longman)
4.	Essen	tial English Grammar (Elementary & Intermediate) Raymond Murphy (CUP)
5.	Comr	nunication for Business: A Practical Approach by Shirley Tailor (Longman)
Refer	ence Bo	oks:
1.	Develo	oping Communication Skills by Krishna Mohan & Meera Banerji (Macmillan)
2.	Busine	ess Correspondence and Report Writing, R. C. Sharma & Krishna Mohan (Tata McGraw
	Hill)	
3.	Sasiku	mar et al. A Course in Listening and Speaking. New Delhi: Foundation Books, 2005.
4	Tony I	Lynch, Study Listening, Cambridge: Cambridge UP, 2004.

.

Savitribai Phule Pune University First Year of Engineering (2024 Pattern) Course Code: CCC-101 Course Name Co-Curricular Course – I

Teaching Scheme		Credit	Examination Scheme
Practical	: 4 Hours/Week	02	Term work : 25 Marks

Objectives:

Students are required to go through the list of following Co-curricular Courses and select any one of their interests. They will be allocated one course from the list. Experts from respective course will conduct classes on campus/Online through activities, discussions, presentations, and lecture methods. Students are required to **submit hard copy of a report along with certificate on the activities performed** related to topics of opted Co-curricular Course.

Evaluation will be done based on the report of activities submitted by student. Faculty members will be allotted for mentoring the activities related to Co-curricular Course topic. Faculty members will frame the **list activities to be performed by students** with the help of experts in respective course.

Selecting co-curricular courses that align with your interests and goals can significantly enrich your educational journey. Remember to maintain a balance and choose courses that you are genuinely excited about. This approach will help you gain the most from your co-curricular activities.

Basket of Co-curricular Courses :

1. Health and Wellness

- 2. Yoga education
- 3. Meditation
- 4. Dancing
- 5. Cultural Activities
- 6. Basics of Music Composition
- 7. Physical Fitness
- 8. Visual Arts
- 9. Painting
- 10. Personality Development
- 11. Art of Short Film Making / Cinematography

Here are some tips and ideas to help you choose the right courses

1. Consider Your Interests and Hobbies

Think about what you enjoy doing in your free time or what activities you have always wanted to try.

Co-curricular courses can be a great opportunity to pursue passions outside your major.

2. Explore Different Fields

Choosing courses from different areas can provide a well-rounded experience. For instance, you might pick one course related to arts, another in sports, and a third in community service.

. Balance Your Schedule

Ensure that the co-curricular courses fit well with your academic schedule and personal commitments. Avoid overloading yourself, as these courses should enhance your experience, not add undue stress.

4. Look at Course Benefits

Some co-curricular courses offer skills that can be beneficial in your future career or personal development. For example, leadership training, public speaking, or project management.

5. Consult with Advisors or Seniors

Talking to academic advisors, professors, or senior students can give you insights into which courses are popular, have good instructors, or offer valuable experiences.

Savitribai Phule Pune University Faculty of Science and Technology

National Education Policy (NEP) Compliant Curriculum

Semester - II

First Year Engineering (2024 Pattern)

www.unipune.ac.in

Savitribai Phule Pune UniversityFirst Year of Engineering (2024 Pattern)Course Code: BSC-151-BESCourse Name: Engineering Mathematics – IITeaching SchemeCreditExamination Scheme

Theory	· 03 Hours/Wook	03	CCE	:	30 Marks
Tutorial	· 05 Hours/ Week	03	End-Semester	:	70 Marks
Tutorial	: Of Hour / week	UI	Term Work	:	25 Marks

Prerequisites:

• Integration, Differential Equation, Three-dimensional coordinate systems

Course Objectives:

To familiarize the students with Advanced techniques of integration, Tracing of curve, Solid geometry, Multiple integrals and their applications, Mathematical modeling of physical systems using differential equations. The aim is to equip them with the concept and tools to understand advanced level mathematics and its applications, that would enhance thinking power, useful in their disciplines.

Course Outcomes:

After successful completion of the course, learner will be able to:

CO1: Apply advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign and Error functions useful in evaluating multiple integrals and their applications.

CO2: Trace the curve for a given equation and measure arc length of various curves. **Apply** the concepts of solid geometry to solve problems on sphere, cone and cylinder in a comprehensive manner.

CO3: Evaluate multiple integrals and its application to find area bounded by curves, volume bounded by surfaces, Centre of gravity and Moment of inertia.

CO4: Apply the effective mathematical tools for solving first order ordinary differential equations such as Exact and Reducible to exact Linear and reducible to Linear.

CO5: Model physical systems using ordinary differential equations, **solve and analyze** the solutions apply to Newton's law of cooling, electrical circuit, rectilinear motion, mass spring systems, heat transfer etc.

Course Contents							
Unit IIntegral Calculus(08 Hours)							
Reduction Formulae, Beta and Gamma functions, Differentiation Under Integral Sign and Error functions.							
Unit II	Curve Tracing and Solid Geometry	(08 Hours)					
Tracing of Curves – Cartesian, Polar and Parametric curves, Rectification of curves. Cartesian, Spherical polar and Cylindrical coordinate systems, Sphere, Cone and Cylinder.							
Unit III	Unit IIIMultiple Integrals and Applications(08 Hours)						
Double and Triple integrations, change of order of integration, Applications to find Area, Volume, Mass, Centre of Gravity and Moment of Inertia.							
Syllabus for First Year of Engi	neering	#54/65					

Unit IV	First Order Ordinary differential Equation	(08 Hours)					
Exact differential equation	s, Equations reducible to exact form. Linear differential equa	ations, Equations					
reducible to linear form an	d Bernoulli's equation.						
Unit V	Applications of Differential Equations	(08 Hours)					
Applications of Differen	tial equations to Orthogonal Trajectories, Newton's L	aw of Cooling,					
Kirchhoff's Law of Electri	cal Circuits, Rectilinear Motion, Simple Harmonic Motion,	One dimensional					
Conduction of Heat.							
Learning Resources							
Text Books:							
1. Higher Engineering Ma	thematics by B. V. Ramana (Tata McGraw Hill).						
2. Higher Engineering Ma	thematics by B. S. Grewal (Khanna Publication, Delhi).						
Reference Books:							
1. Advanced Engineering	Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.).						
2. Advanced Engineering	Mathematics by M. D. Greenberg (Pearson Education).						
3. Advanced Engineering	Mathematics by Peter V. O'Neil (Thomson Learning).						
4. Thomas' Calculus by G	eorge B. Thomas, (Addison-Wesley, Pearson).						
5. Applied Mathematics (V	ol. I and II) by P.N. Wartikar and J.N.Wartikar Vidyarthi C	Griha Prakashan,					
Pune.							
6. Differential Equations b	by S. L. Ross (John Wiley and Sons).						
MOOC / NPTEL/YouTul	be Links:						
https://youtube.com/playlis	https://youtube.com/playlist?list=PLbRMhDVUMngeVrxtbBz-						
n8HvP8KAWBpI5&si=3x	AONJdT2ph_jcvG						
Tutorial and Term Work	:						
1. Tutorial for the subject shall be engaged in minimum three batches (batch size of 22 students							

maximum) per division.

2. Term work shall consist of six assignments each on unit-I to unit-VI and is based on performance and continuous internal assessment.

Savitribai Phule Pune University First Year of Engineering (2024 Pattern)							
Course Co	Course Code: PCC-151-ITT Course Name: Programming and Problem Solving						
Tea	Teaching SchemeCreditExamination Scheme						
Theory Practical	: 02 Hours/V : 02 Hours/V	Veek Veek	02 02	CCE End – Semester Term Work	: 30 Ma : 70 Ma : 25 Ma	arks arks arks	
Prerequisit Basic Func	e Courses, if a cs of Compute lamentals of Pr	ny: rs and B ogramm	asic Mathematics ning Languages (C	COM108)			
Companion	Course, if an	y: Fund	amentals of Progr	amming Language	s Lab		
To understandecision con oriented pro	nd problem so ntrol statement gramming con	lving asponent	pects and to know ion, strings, file l ing python.	y python programm nandling in Python	ning with le a. To learn	earning data types, features of object	
On completi CO1: Inculo	on of the cours cate and apply	se, learn various	er will be able to: skills in problem	solving.			
CO2: Choos	se appropriate	program	ming constructs a	and features to solv	ve the prob	lems in diversified	
domains.							
CO3: Exhi	ibit the prog	ramming	g skills for the	problem-solving	using fun	ctions and string	
manipulation	ns.				C	C	
CO4: Demo	onstrate File h	andling	and dictionaries in	n Python.			
CO5: Apply	y Object Orien	ted conc	epts in Python.	2			
			Course Co	ntents			
Un	it I	Uni	t I : Problem Sol Python P	ving, Programmir rogramming	ng and	(04 Hours)	
General Pro	blem Solving	Concept	s- Problem solvir	ig in everyday life	, types of p	broblems, problem	
solving with	computers, di	fficulties	s with problem sol	ving, problem solv	ving aspects	s, top down design.	
Problem Sol	lving Strategies	5,	1		0 1		
Basics of P	vthon Program	ming: F	Features of Python	n, History and Fut	ure of Pyth	non, Programming	
Paradigm, F	eatures of Obj	ect Oriei	nted Programming	, Applications of F	ython Lan	guages.	
Un	it II	Ad	vance Data Type Stat	s and Decision Co ements	ontrol	(04 Hours)	
Advance da	ta types- Tup	les, List	s, Sets and Dict	onary. Decision C	Control Sta	tements: Decision	
control state	ments, Selection	on/condi	tional branching				
Statements: if, if-else, nested if, if-elif-else statements. Basic loop Structures/Iterative							
Statements,	Statements, while loop, for loop, selecting appropriate loop. Nested loops, The break, continue, pass.						
else stateme	else statement used with loops.						
Uni	t III		Functions	and Strings		(03 Hours)	
Need for fu	inctions, Function	tion: de	finition, call. var	able scope and li	fetime, the	return statement.	
Defining functions, Lambda or anonymous function, documentation string, good programming practices.							

.

Introduction to modules, Introduction to packages in Python, Introduction to standard library modules. Strings and Operations- concatenation, appending, multiplication and slicing. Strings are immutable, strings formatting operator, built in string methods and functions. Slice operation, ord() and chr() functions, in and not in operators, comparing strings, Iterating strings, the string module.

 Unit IV
 File Handling and Dictionaries
 (04 Hours)

Files: Introduction, File path, Types of files, Opening and Closing files, Reading and Writing files. File Positions, Renaming and deleting files. Directory Methods, Dictionaries creating, assessing, adding and updating values. Case Study: Study design, features, and use of any recent, popular and efficient system developed using Python. (This topic is to be excluded for theory examination)

Unit VObject Oriented Programming(04 Hours)

Structured and object oriented: Features of Object oriented programming-classes, objects, methods and message passing, inheritance, polymorphism, containership, reusability, delegation, data abstraction and encapsulation.

Classes and Objects: classes and objects, class method and self-argument, __init__() method, class variables and object variables, __del__() method, public and private members, Built in function to check, Get, Set and Delete class attribute, Garbage collection, class methods, Static Method.

List of Laboratory Experiments/Assignments

Group A

Practical on Unit I

Program Design Tools: Algorithms, Flowcharts and Pseudo-codes, implementation of algorithms. Writing and executing Python program, Literal constants, variables and identifiers, Data Types, Input operation, Comments, Reserved words, Indentation, Operators and expressions, Expressions in Python.

- 1. Installation of Python
- 2. Program to display data of different types using variable and literal constants.
- 3. Program to read variables from the user.
- 4. Program to exhibit indentation errors.
- 5. Program to perform all operation (addition, multiplication, subtraction, division, modules) and expression.
- 6. Program to convert degree Fahrenheit into degree Celsius.
- 7. To calculate salary of an employee given his basic pay (take as input from user). Calculate gross salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employee pay professional tax as 2% of total salary. Calculate net salary payable after deductions

Practical on Unit II

- 1. Type Conversion, Type casting, Comment
- 2. Program to demonstrate operation on lists
- 3. Program to determine whether a person is eligible to vote or not
- 4. Program to find whether the given number is even or odd
- 5. Program to determine whether the character entered is a vowel or not.
- 6. Program to calculate the sum and average of first 10 numbers
- 7. Program to find whether the given number is an Amstrong number or not.
- 8. Program to enter a number and then calculate the sum of its digits.
- 9. Program to print the multiplication table of n, where n value is entered by user.

Practical on Unit III

- 1. Program to concatenate two string using + operator.
- 2. Program to append a string using += operator.
- 3. Program to display power of a number without using formatting characters.
- 4. Program to display power of a number using formatting characters.
- 5. Program to demonstrate slice operation on string objects.
- 6. Program to understand how characters in a string are accessed using negative indexes.
- 7. Program to understand ord() and char() function.
- 8. Program that uses split() to split a multiline string.
- 9. Program that counts the occurrences of a character in a string. Do not use built in function.
- 10. Program to reverse of string by user defined function.
- 11. Write a python program that accepts a string from user and perform following string operations- i. Calculate length of string ii. String reversal iii. Equality check of two strings iii. Check palindrome ii. Check substring

Practical on Unit IV

- 1. Program to open a file and print its attribute values.
- 2. Program to access a file after it is closed
- 3. Program to write a file using the writelines() method.
- 4. Program to append data to an already existing file.
- 5. Program to display the contents of a file.
- 6. Program to split the line into a series of words and use space to perform the split operation.
- 7. Program that tells and sets the position of the file pointer.
- 8. Program that reads data from a file and calculates the percentage of vowels and consonants in the file.
- 9. Program that changes the current directory to our newly created directory.
- 10. Program to print the absolute path of a file using os.path.join
- 11. Program that counts the number of tabs, space and newline character in a file.
- 12. To copy contents of one file to another. While copying a) all full stops are to be replaced with commas b) lower case are to be replaced with upper case c) upper case are to be replaced with lower case.

Practical on Unit V

- 1. Program to access class variable using class object.
- 2. Program to access class members using class object.
- 3. Program to illustrating the use of __int__() method.
- 4. Program to differentiate between class and object variable.
- 5. Program to illustrating the use of __del__() method.
- 6. Program to illustrating the difference between public and private variable.
- 7. The program should subtract the DOB from todays date to find out whether a person is eligible to vote or not.
- Create class EMPLOYEE for storing details (Name, Designation, gender, Date of Joining and Salary). Define function members to compute a)total number of employees in an organization b) count of male and female employee c) Employee with salary more than 10,000 d) Employee with designation "Asst Manager"

Group B

Teachers should frame assignments from Mechanical Engineering, Civil Engineering, Electrical Engineering application domains.

Faculty from these course branches to design and conduct the practical sessions.

Electrical Engineering:

- 1. Develop algorithms, draw flow chart, and write a program to solve electrical network (KVL/KCL) using python.
- 2. Develop algorithms, draw flow chart, and write a program for star delta conversion using python.
- 3. Develop algorithm, draw flow chart, and write a program to calculate the impedance of RLC circuit using python.
- 4. Develop algorithm, draw flow chart, and write a program to calculate efficiency of singlephase transformer using python.

Civil Engineering:

- 1. A concentrated load of 1000KN is applied at the ground surface. Write a program to compute the vertical pressure (i) at a depth of 4m below the load , (ii) at a distance of 3m at the same depth. Use Boussinesq's equation.
- 2. A Filtered water discharge of 1MLD has a chlorine demand of 4.8 mg/l. It is required to maintain a chlorine residual of 0.2 mg/l. Write a program to determine the quantity of bleaching powder necessary of 6 months (Chlorine Available-25%).
- 3. A simply supported beam AB having spam of 4 meters loaded with following cases: Case 1) 100 KN at centre. Case 2) 50 KN at 1 meter from A support. Write a program to determine support reactions at A and B.
- 4. Two forces P and Q acting on a body 180 KN and 240 KN respectively. The angle between the two forces is 60 degrees. Determine the resultant of force P and Q and it's direction with respect to Q force.

Mechanical Engineering:

- 1. On a certain planet a correctly calibrated spring balance shows the weight of a body 12 N, the mass of which is 4.893 kg. Write a program to find the value of gravity on this planet.
- 2. Write a program to estimate the heat loss through a red brick wall of length 5m, height 4m and thickness 0.25m, if the temperatures of the wall surfaces are maintained at 110 degree centigrade and 40 degree centigrade respectively. K for red brick is 0.70 W/mk.
- 3. Assume five liters of Oil weigh 61.80 N. Write a program to calculate i) Specific Weight ii) Specific mass using python.

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by student in the form of journal. Journal consists of prologue, Certificate, table of contents, and handwritten write-up of each assignment (Title, Objectives, Problem Statement, Outcomes, software & Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, Theory Concept in brief, features of tool/framework/language used, Design, test cases, conclusion.

Program codes with sample output of all performed assignments are to be submitted as softcopy. As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Lab /TW Assessment

Continuous assessment of laboratory work is done based on overall performance and lab assignments performance of student. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

All students should submit the term work consisting of 14 programming assignments. At least 2 assignments from each unit for Group A. Faculty can select any 4 assignments from Group B.

Learning Resources

Text Books:

- 1. Reema Thareja, "Python Programming Using Problem Solving Approach", Oxford University Press, ISBN 13: 978-0-19-948017-6
- **2.** R. Nageswara Rao, "Core Python Programming", Dreamtech Press; Second edition ISBN10:938605230X, ISBN-13: 978-9386052308 ASIN: B07BFSR3LL

Reference Books:

- R. G. Dromey, "How to Solve it by Computer", Pearson Education India; 1st edition, ISBN10: 8131705625, ISBN-13: 978-8131705629 Maureen Spankle, "Problem Solving and Programming Concepts", Pearson; 9th edition, ISBN-10: 9780132492645, ISBN-13: 978-0132492645
- Romano Fabrizio, "Learning Python", Packt Publishing Limited, ISBN: 9781783551712, 1783551712
- 3. Paul Barry, "Head First Python- A Brain Friendly Guide", SPD O'Reilly, 2nd Edition, ISBN:978-93-5213-482-3
- 4. Martin C. Brown, "Python: The Complete Reference", McGraw Hill Education, ISBN-10:9789387572942, ISBN-13: 978-9387572942, ASIN: 9387572943
- Jeeva Jose, P. Sojan Lal, "Introduction to Computing & Problem Solving with Python", Khanna Computer Book Store; First edition, ISBN-10: 9789382609810, ISBN-13: 978-9382609810

Savitribai Phule Pune University First Year of Engineering (2024 Pattern)

Course Code: IKS-151 Course Name: Indian Knowledge System

Teaching Scheme	Credit	Examination Scheme
Tutorial : 02 Hours/Week	02	Term Work : 25 Marks

Course Objectives:

- **1.** To introduce students to the foundational concepts of Indian knowledge systems and their significance.
- 2. To familiarize students with key dates in Indian history and the historical timeline.
- **3.** To provide an overview of Indian philosophical systems and their relevance.
- **4.** To explore significant scientific achievements in ancient India and analyze scientific texts and inventions.
- **5.** To examine the role of engineering in ancient India and its contributions to metallurgy, materials science, and architectural techniques.

Course Outcomes:

On completion of this course, learners will be able to:

CO1 - Understand the significance and historical context of Indian knowledge systems.

CO 2 - Comprehend Indian philosophical concepts, scientific achievements, and their interplay.

CO 3- Recognize the role of engineering in ancient India and its impact on architecture and materials.

CO 4- Apply ancient Indian engineering principles in modern practices while considering cultural and environmental aspects.

IKS Syllabus should be followed from the following link:

http://collegecirculars.unipune.ac.in/sites/documents/Syllabus2024/Indian%20Knowledge%20Systems %20(IKS)%20(Generic)%20Academic%20Year%202024-25_03062024.pdf

Note: This course will be available in online mode on SPPU portal for the all students.

Assignments for Term Work

Note: Students have to complete all Assignments and two activates from the following given list.

Assignment 1: Students should search for literature and create a presentation on a specific key date or

event in Indian history. They should explain its significance and how it contributed to Indian knowledge systems.

Learning Outcome: Enhances research skills and understanding of the historical context.

Assignment 2: Assign groups to compare and contrast the BC/CE dating system with other historical dating

systems from different cultures.

Learning Outcome: Promotes critical thinking and cross-cultural understanding.

Assignment 3: Students should study and create presentations or reports on significant scientific inventions or discoveries from ancient India.

- Syllabus for First Year of Engineering -

Learning Outcome: Develops research and presentation skills while enhancing knowledge of Indian scientific achievements

Assignment 4: Ask students to work in groups to research and present on ancient Indian contributions to metallurgy and materials science. They can also create simple experiments to demonstrate metallurgical processes.

Learning Outcome: Enhances research and experimentation skills while deepening understanding of materials science

Assignment 5: Assign students to choose a modern engineering project in India that incorporates sustainability principles. They should analyze the project's design, materials, and environmental impact.

Learning Outcome: Develops critical analysis skills and an understanding of sustainable engineering practices.

Assignment 6: A group of students should present case studies on modern engineering projects that consider cultural and environmental aspects. Discuss how cultural sensitivity is integrated into these projects.

Learning Outcome: Promotes teamwork, presentation skills, and cultural awareness

Assignment 7: Encourage students to propose and discuss how ancient Indian engineering principles could be integrated into a modern construction project. They should consider cultural, environmental, and sustainability aspects.

Learning Outcome: Encourages creative problem-solving and understanding of cultural relevance in engineering.

Activities (At least 4 Activities to be performed)

Activity 1: Organize in-class debate on Mathematics in Indus Valley Civilization

Activity 2: Organize in-class debate Aryabhata and His Contributions

Activity 3: Students to submit a report on Innovations in Number Systems and Zero

Activity 4: Aryabhata: The Pioneer of Indian Astronomy

Activity 5: Rise of Trade Centers and Urbanization

Activity 6: The Role of Poetry in Ancient Indian Literature

Case Studies (At least 4 case studies by an individual or group of students)

Case Study 1: The Sun Temple, Konark

Case Study 2: Evolution of Regional Dance Forms

Case Study 3: Training and Discipline in the Military

Case Study 4: Influence on Medicine and Wellness

Case Study 5: Indian Knowledge Systems: Global Influence

Case Study 6: Ancient Indian Sciences

Savitribai Phule Pune UniversityFirst Year of Engineering (2024 Pattern)Course Code: CCC-151 Course Name: Co-Curricular Courses - IITeaching SchemeCreditExamination Scheme

Teaching Scheme	Credit	Examination Scheme
Practical : 04 Hours/Week	02	Term Work : 25 Marks

Course Objectives:

Students are required to go through the list of following Co-curricular Courses and select any one of their interests. They will be allocated one course from the list. Experts from respective course will conduct classes on campus/Online through activities, discussions, presentations, and lecture methods.

Students are required to **submit hard copy of a report along with certificate** on the activities performed related to topics of opted Co-curricular Course. Evaluation will be done based on the report of activities submitted by student.

Faculty members will be allotted for mentoring the activities related to Co-curricular Course topic. Faculty members will frame the list activities to be performed by students with the help of experts in respective course.

Selecting co-curricular courses that align with your interests and goals can significantly enrich your educational journey. Remember to maintain a balance and choose courses that you are genuinely excited about. This approach will help you gain the most from your co-curricular activities.

Basket of Co-curricular Courses

- 1. Sports
- 2. NSS
- 3. NCC
- 4. Fine Arts
- 5. Applied Arts
- 6. Performing Arts
- 7. Self Defense for Women
- 8. Jeevan Vidya (Work Life Balance)
- 9. Integrated
- 10. Design Thinking
- 11. Innovation and Creativity
- 12. Principle Centered Leadership
- 13. Mentoring of School Children
- 14. Basics of Fire Safety

Here are some tips and ideas to help you choose the right courses:

1. Consider Your Interests and Hobbies

Think about what you enjoy doing in your free time or what activities you have always wanted to try. Cocurricular courses can be a great opportunity to pursue passions outside your major.

2. Explore Different Fields

Choosing courses from different areas can provide a well-rounded experience. For instance, you might pick one course related to arts, another in sports, and a third in community service.

3. Balance Your Schedule

Ensure that the co-curricular courses fit well with your academic schedule and personal commitments. Avoid overloading yourself, as these courses should enhance your experience, not add undue stress.

4. Look at Course Benefits

Some co-curricular courses offer skills that can be beneficial in your future career or personal development. For example, leadership training, public speaking, or project management.

5. Consult with Advisors or Seniors

Talking to academic advisors, professors, or senior students can give you insights into which courses are popular, have good instructors, or offer valuable experiences.

FE – 2024 Pattern –National Education Policy (NEP)-2020 Compliant Syllabus

Task Force for Curriculum Design and Development

Auvisors & The Chanmen - Doard of Studies		
Dr. D. S. Bormane	Dr. G. K. Kharate	
Dr. V. H. Patil	Dr. Sunil Thakare	
Dr. S. D. Shirbahadurkar	Dr. Sanjay Deokar	
Dr. Pradeep Patil	Dr. Sudeep Thepade	
Dr. Vaibhav Dixit	Dr. Nilesh Uke	
Dr. Nitin Mujumdar	Dr. Kalpana Joshi	
Dr. Radhika Memon	Dr. Vivek Rane	
Dr. Shirish Sane	Dr. Keshav Nandurkar	
Dr. Manmohan Bhumkar	Dr. Somnath Nandi	

Advisors & The Chairmen - Board of Studies

Team Members for Course Design

Dr. M. B. Mali	Dr. Dipak Patil
Mrs. S. Maitri	Mrs. Pratima Patil
Dr. P. D. Lambate	Dr. Madhuri Jawale
Dr. Avinash Sarwade	Dr. Mukesh Ghogare
Dr. N. G. Shekapure	Dr. Deepak Sonje
Dr. Uttam Awari	Dr. Jyotiba Gurav
Dr. Raviraj Sorate	Dr. B. D. Jadhav
Dr. S. K. Moon	Dr. S. V. Kulkarni
Prof. G. V. Madhikar	Dr. Neeta Deshpande
Dr. Aiswarya Gawand	Dr. Umesh P. Moharil
Dr. Sridhar Saptale	Prof. Ganesh Kondhalkar
Prof. Nitin Gaikwad	

Compiled By

Dr. Nilesh Uke

Dr. Pramod D. Patil Dean – Science and Technology Savitribai Phule Pune University, Pune